論文の概要: Quantum Reinforcement Learning by Adaptive Non-local Observables
- arxiv url: http://arxiv.org/abs/2507.19629v1
- Date: Fri, 25 Jul 2025 18:57:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.865287
- Title: Quantum Reinforcement Learning by Adaptive Non-local Observables
- Title(参考訳): 適応型非局所観測器による量子強化学習
- Authors: Hsin-Yi Lin, Samuel Yen-Chi Chen, Huan-Hsin Tseng, Shinjae Yoo,
- Abstract要約: 可変量子回路(VQC)における適応的非局所観測可能(ANO)パラダイムを導入する。
ANO-VQCアーキテクチャは、Deep Q-Network (DQN) と Asynchronous Advantage Actor-Critic (A3C) アルゴリズムの関数近似器として機能する。
この結果から,適応型マルチキュービットオブザーバブルは,強化学習における実用的な量子アドバンテージを実現することができることが示された。
- 参考スコア(独自算出の注目度): 10.617463958884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hybrid quantum-classical frameworks leverage quantum computing for machine learning; however, variational quantum circuits (VQCs) are limited by the need for local measurements. We introduce an adaptive non-local observable (ANO) paradigm within VQCs for quantum reinforcement learning (QRL), jointly optimizing circuit parameters and multi-qubit measurements. The ANO-VQC architecture serves as the function approximator in Deep Q-Network (DQN) and Asynchronous Advantage Actor-Critic (A3C) algorithms. On multiple benchmark tasks, ANO-VQC agents outperform baseline VQCs. Ablation studies reveal that adaptive measurements enhance the function space without increasing circuit depth. Our results demonstrate that adaptive multi-qubit observables can enable practical quantum advantages in reinforcement learning.
- Abstract(参考訳): ハイブリッド量子古典フレームワークは、機械学習に量子コンピューティングを利用するが、局所的な測定を必要とするため、変分量子回路(VQC)は制限される。
我々は、量子強化学習(QRL)のためのVQC内に適応的非局所観測可能(ANO)パラダイムを導入し、回路パラメータとマルチキュービットの測定を協調的に最適化する。
ANO-VQCアーキテクチャは、Deep Q-Network (DQN) と Asynchronous Advantage Actor-Critic (A3C) アルゴリズムの関数近似器として機能する。
複数のベンチマークタスクにおいて、ANO-VQCエージェントはベースラインVQCよりも優れている。
アブレーション研究により、適応測定は回路深さを増大させることなく関数空間を増大させることが明らかとなった。
この結果から,適応型マルチキュービットオブザーバブルは,強化学習における実用的な量子アドバンテージを実現することができることが示された。
関連論文リスト
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
現在の中間スケール量子(NISQ)デバイスはその能力に制限がある。
本稿では,パラメータ化ネットワーク(TN)を用いて,変分量子固有解法(VQE)アルゴリズムの性能改善を試みる。
論文 参考訳(メタデータ) (2024-02-19T12:53:52Z) - A Novel Spatial-Temporal Variational Quantum Circuit to Enable Deep
Learning on NISQ Devices [12.873184000122542]
本稿では,量子学習における非線形性を統合するために,新しい時空間設計,ST-VQCを提案する。
ST-VQCは、実際の量子コンピュータ上の既存のVQCと比較して30%以上の精度向上を達成できる。
論文 参考訳(メタデータ) (2023-07-19T06:17:16Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
変動量子回路(VQC)における重み付けの考え方を紹介する。
我々は,8つの分類データセットに対する影響を評価するために,7つの異なる重み再マッピング関数を用いる。
以上の結果から,重量再マッピングによりVQCの収束速度が向上することが示唆された。
論文 参考訳(メタデータ) (2023-06-09T09:42:21Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine learning framework [48.491303218786044]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Learning Fourier series with parametrized quantum circuits [2.51657752676152]
変分量子アルゴリズム(VQA)とそのパラメタライズド量子回路(PQC)による量子機械学習分野への応用は、ノイズの多い中間スケール量子コンピューティングデバイスを活用する主要な方法の1つであると考えられている。
本稿では,PQC においてよく使われているアンス・アゼが,異なる一次元のトランケートされたフーリエ級数を学ぶかを比較することによって,Schuld らの研究に基づいて構築する。
また、Beerらが導入した散逸性量子ニューラルネットワーク(dQNN)についても検討し、その能力を高めるために、dQNNのデータ再ロード構造を提案する。
論文 参考訳(メタデータ) (2022-09-21T13:26:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。