Feature learning is decoupled from generalization in high capacity neural networks
- URL: http://arxiv.org/abs/2507.19680v1
- Date: Fri, 25 Jul 2025 21:19:37 GMT
- Title: Feature learning is decoupled from generalization in high capacity neural networks
- Authors: Niclas Alexander Göring, Charles London, Abdurrahman Hadi Erturk, Chris Mingard, Yoonsoo Nam, Ard A. Louis,
- Abstract summary: We introduce a concept we call feature quality to measure this performance improvement.<n>Current theories of feature learning do not provide a sufficient foundation for developing theories of neural network generalization.
- Score: 2.3348738689737507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks outperform kernel methods, sometimes by orders of magnitude, e.g. on staircase functions. This advantage stems from the ability of neural networks to learn features, adapting their hidden representations to better capture the data. We introduce a concept we call feature quality to measure this performance improvement. We examine existing theories of feature learning and demonstrate empirically that they primarily assess the strength of feature learning, rather than the quality of the learned features themselves. Consequently, current theories of feature learning do not provide a sufficient foundation for developing theories of neural network generalization.
Related papers
- Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization [66.03821840425539]
In this paper, we investigate the training dynamics of $L$-layer neural networks using the tensor gradient program (SGD) framework.<n>We show that SGD enables these networks to learn linearly independent features that substantially deviate from their initial values.<n>This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum.
arXiv Detail & Related papers (2025-03-12T17:33:13Z) - Towards a Statistical Understanding of Neural Networks: Beyond the Neural Tangent Kernel Theories [13.949362600389088]
A primary advantage of neural networks lies in their feature learning characteristics.<n>We propose a new paradigm for studying feature learning and the resulting benefits in generalizability.
arXiv Detail & Related papers (2024-12-25T03:03:58Z) - Convergence Analysis for Deep Sparse Coding via Convolutional Neural Networks [7.956678963695681]
We explore intersections between sparse coding and deep learning to enhance our understanding of feature extraction capabilities.<n>We derive convergence rates for convolutional neural networks (CNNs) in their ability to extract sparse features.<n>Inspired by the strong connection between sparse coding and CNNs, we explore training strategies to encourage neural networks to learn more sparse features.
arXiv Detail & Related papers (2024-08-10T12:43:55Z) - Spring-block theory of feature learning in deep neural networks [11.396919965037636]
We show how feature-learning deep nets collapse data to a regular low-dimensional geometry.<n>We propose a macroscopic mechanical theory that reproduces the diagram and links feature learning across layers to generalization.
arXiv Detail & Related papers (2024-07-28T00:07:20Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons [50.33260238739837]
Graph networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data.<n>There remains a lack of analysis comparing GNNs and generalizations from an optimization and generalization perspective.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness? [0.0]
We study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods.
We show how NTKs allow to generate adversarial examples in a training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the lazy'' regime.
arXiv Detail & Related papers (2022-10-11T16:11:48Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - A Theoretical Analysis on Feature Learning in Neural Networks: Emergence
from Inputs and Advantage over Fixed Features [18.321479102352875]
An important characteristic of neural networks is their ability to learn representations of the input data with effective features for prediction.
We consider learning problems motivated by practical data, where the labels are determined by a set of class relevant patterns and the inputs are generated from these.
We prove that neural networks trained by gradient descent can succeed on these problems.
arXiv Detail & Related papers (2022-06-03T17:49:38Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
We study how contrastive learning learns the feature representations for neural networks by analyzing its feature learning process.
We prove that contrastive learning using textbfReLU networks provably learns the desired sparse features if proper augmentations are adopted.
arXiv Detail & Related papers (2021-05-31T16:42:09Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.