Matching Game Preferences Through Dialogical Large Language Models: A Perspective
- URL: http://arxiv.org/abs/2507.20000v1
- Date: Sat, 26 Jul 2025 16:40:17 GMT
- Title: Matching Game Preferences Through Dialogical Large Language Models: A Perspective
- Authors: Renaud Fabre, Daniel Egret, Patrice Bellot,
- Abstract summary: This paper explores the future potential of "conversational intelligence" by examining how Large Language Models (LLMs) could be combined with GRAPHYP's network system.<n>We propose a conceptual framework that could make AI rea-soning transparent and traceable.<n>The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached.
- Score: 0.6827423171182154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This perspective paper explores the future potential of "conversational intelligence" by examining how Large Language Models (LLMs) could be combined with GRAPHYP's network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that could make AI rea-soning transparent and traceable, allowing humans to see and understand how AI reaches its conclusions. We present the conceptual perspective of "Matching Game Preferences through Dialogical Large Language Models (D-LLMs)," a proposed system that would allow multiple users to share their different preferences through structured conversations. This approach envisions personalizing LLMs by embedding individual user preferences directly into how the model makes decisions. The proposed D-LLM framework would require three main components: (1) reasoning processes that could analyze different search experiences and guide performance, (2) classification systems that would identify user preference patterns, and (3) dialogue approaches that could help humans resolve conflicting information. This perspective framework aims to create an interpretable AI system where users could examine, understand, and combine the different human preferences that influence AI responses, detected through GRAPHYP's search experience networks. The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached, making artificial intelligence more transparent and trustworthy for human decision-making.
Related papers
- UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations [71.79210031338464]
We show how to unify dense retrieval and response generation for large language models in conversation.<n>We conduct joint fine-tuning with different objectives and design two mechanisms to reduce the inconsistency risks.<n>The evaluations on five conversational search datasets demonstrate that our unified model can mutually improve both tasks and outperform the existing baselines.
arXiv Detail & Related papers (2025-07-09T17:02:40Z) - AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models [78.08374249341514]
The rapid development of AI-generated content (AIGC) has led to the misuse of AI-generated images (AIGI) in spreading misinformation.<n>We introduce a large-scale and comprehensive dataset, Holmes-Set, which includes an instruction-tuning dataset with explanations on whether images are AI-generated.<n>Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control.<n>In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization
arXiv Detail & Related papers (2025-07-03T14:26:31Z) - Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models [54.85405423240165]
We introduce Interactive Reasoning, an interaction design that visualizes chain-of-thought outputs as a hierarchy of topics.<n>We implement interactive reasoning in Hippo, a prototype for AI-assisted decision making in the face of uncertain trade-offs.
arXiv Detail & Related papers (2025-06-30T10:00:43Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
We introduce a multi- module framework designed to replicate the key aspects of human intelligence involved in conversations.<n>In the second stage of our approach, these conversational data, after filtering and labeling, can serve as training and testing data for reinforcement learning.
arXiv Detail & Related papers (2025-02-28T03:18:39Z) - Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision [50.23246260804145]
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities.<n>Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures.<n>Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL.<n>Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios.
arXiv Detail & Related papers (2025-02-26T17:26:36Z) - Mechanistic understanding and validation of large AI models with SemanticLens [13.712668314238082]
Unlike human-engineered systems such as aeroplanes, the inner workings of AI models remain largely opaque.<n>This paper introduces SemanticLens, a universal explanation method for neural networks that maps hidden knowledge encoded by components.
arXiv Detail & Related papers (2025-01-09T17:47:34Z) - Found in Translation: semantic approaches for enhancing AI interpretability in face verification [0.4222205362654437]
This study extends previous work by integrating semantic concepts into XAI frameworks to bridge the comprehension gap between model outputs and human understanding.<n>We propose a novel approach combining global and local explanations, using semantic features defined by user-selected facial landmarks.<n>Results indicate that our semantic-based approach, particularly the most detailed set, offers a more nuanced understanding of model decisions than traditional methods.
arXiv Detail & Related papers (2025-01-06T08:34:53Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
This study explores the universal interaction recognition in an open-world setting through the use of Vision-Language (VL) foundation models and large language models (LLMs)
Our design includes an HO Prompt-guided Decoder (HOPD), facilitates the association of high-level relation representations in the foundation model with various HO pairs within the image.
For open-category interaction recognition, our method supports either of two input types: interaction phrase or interpretive sentence.
arXiv Detail & Related papers (2023-11-07T08:27:32Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
arXiv Detail & Related papers (2023-05-29T17:50:33Z) - DetGPT: Detect What You Need via Reasoning [33.00345609506097]
We introduce a new paradigm for object detection that we call reasoning-based object detection.
Unlike conventional object detection methods that rely on specific object names, our approach enables users to interact with the system using natural language instructions.
Our proposed method, called DetGPT, leverages state-of-the-art multi-modal models and open-vocabulary object detectors.
arXiv Detail & Related papers (2023-05-23T15:37:28Z) - Selective Explanations: Leveraging Human Input to Align Explainable AI [40.33998268146951]
We propose a general framework for generating selective explanations by leveraging human input on a small sample.
As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task.
Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI.
arXiv Detail & Related papers (2023-01-23T19:00:02Z) - Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems [10.746852024552334]
This work investigates the embeddings for representing dialog history in spoken language understanding systems.
We proposed to integrate dialogue history into an end-to-end signal-to-concept SLU system.
Three types of h-vectors are proposed and experimentally evaluated in this paper.
arXiv Detail & Related papers (2020-02-14T13:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.