論文の概要: IQ Test for LLMs: An Evaluation Framework for Uncovering Core Skills in LLMs
- arxiv url: http://arxiv.org/abs/2507.20208v1
- Date: Sun, 27 Jul 2025 10:11:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.26576
- Title: IQ Test for LLMs: An Evaluation Framework for Uncovering Core Skills in LLMs
- Title(参考訳): LLMのIQテスト: LLMのコアスキルを明らかにするための評価フレームワーク
- Authors: Aviya Maimon, Amir DN Cohen, Gal Vishne, Shauli Ravfogel, Reut Tsarfaty,
- Abstract要約: 本稿では,因子分析を用いて,ベンチマーク間での潜在スキルの駆動性能を推定する新しい評価パラダイムを提案する。
これらの洞察を、冗長なタスクを識別し、モデル選択を支援し、各潜伏するスキルに沿ってプロファイルモデルをプロファイルする実践的なツールに変換する。
- 参考スコア(独自算出の注目度): 27.291294878333765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current evaluations of large language models (LLMs) rely on benchmark scores, but it is difficult to interpret what these individual scores reveal about a model's overall skills. Specifically, as a community we lack understanding of how tasks relate to one another, what they measure in common, how they differ, or which ones are redundant. As a result, models are often assessed via a single score averaged across benchmarks, an approach that fails to capture the models' wholistic strengths and limitations. Here, we propose a new evaluation paradigm that uses factor analysis to identify latent skills driving performance across benchmarks. We apply this method to a comprehensive new leaderboard showcasing the performance of 60 LLMs on 44 tasks, and identify a small set of latent skills that largely explain performance. Finally, we turn these insights into practical tools that identify redundant tasks, aid in model selection, and profile models along each latent skill.
- Abstract(参考訳): 大規模言語モデル(LLM)の現在の評価は、ベンチマークスコアに依存するが、これらの個々のスコアがモデル全体のスキルについて何を示すかを理解することは困難である。
具体的には、コミュニティとして、タスクが相互にどのように関係しているか、共通して何を計測するか、どのように異なるか、どれが冗長であるか、といった理解が欠如しています。
結果として、モデルはベンチマーク全体で平均された1つのスコアで評価されることが多く、モデルの全体的強みと制限を捉えるのに失敗するアプローチである。
本稿では、因子分析を用いて、ベンチマーク間で性能を駆動する潜在スキルを識別する新しい評価パラダイムを提案する。
44タスクにおける60 LLMの性能を示す総合的な新しいリーダーボードに本手法を適用し,性能を概説する潜在スキルのセットを同定する。
最後に、これらの洞察を、冗長なタスクを識別し、モデル選択を支援し、各潜在スキルに沿ってプロファイルモデルをプロファイルする実用的なツールに変換する。
関連論文リスト
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Benchは、多ラウンドの対話シナリオで大規模言語モデルを評価する新しいベンチマークである。
エージェント性能は、最終的な数値出力と人間由来のベースラインを比較して判断する。
最先端のコーディングエージェント(Claude-3.7-thinkingなど)でさえ50%のタスクを成功させ、シングルターンテストでは明らかでない制限を強調している。
論文 参考訳(メタデータ) (2025-05-23T09:37:52Z) - Meta-Evaluating Local LLMs: Rethinking Performance Metrics for Serious Games [3.725822359130832]
大規模言語モデル (LLMs) は、真剣なゲームにおける評価指標としてますます研究されている。
本研究では,エネルギーコミュニティにおける意思決定をシミュレートするゲームであるtextitEn-join において,5つの小規模 LLM の信頼性について検討した。
その結果、各モデルの長所と短所を強調し、感度、特異性、全体的なパフォーマンスのトレードオフを明らかにした。
論文 参考訳(メタデータ) (2025-04-13T10:46:13Z) - Model Utility Law: Evaluating LLMs beyond Performance through Mechanism Interpretable Metric [99.56567010306807]
大規模言語モデル(LLM)は、学術、産業、そして日々のアプリケーションに欠かせないものになっている。
大規模言語モデル (LLM) 時代における評価の課題の1つは一般化問題である。
従来の性能スコアを補完するメカニズムの解釈可能性向上指標であるモデル利用指数(MUI)を提案する。
論文 参考訳(メタデータ) (2025-04-10T04:09:47Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - Statistical Uncertainty Quantification for Aggregate Performance Metrics in Machine Learning Benchmarks [0.0]
複数のタスクにまたがって集約されたメトリクスの不確かさを定量化するために,統計的手法がいかに用いられるかを示す。
これらの技術は、全体的なパフォーマンスが劣っているにもかかわらず、特定のタスクに対する特定のモデルの優位性のような洞察を浮き彫りにする。
論文 参考訳(メタデータ) (2025-01-08T02:17:34Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
現代の言語モデル(LM)は、能力評価において新たな課題を提起する。
メトリクスに自信を持つためには、モデルミアロジの新たな規律が必要です。
論文 参考訳(メタデータ) (2024-07-22T17:52:12Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
大規模言語モデル(LLM)のための新しい評価パラダイムを導入する。
このパラダイムは、しばしば推論プロセスを無視する結果指向の評価から、より包括的な評価へと重点を移す。
GSM8Kデータセットにこのパラダイムを適用し,MR-GSM8Kベンチマークを開発した。
論文 参考訳(メタデータ) (2023-12-28T15:49:43Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Evaluating the Evaluators: Are Current Few-Shot Learning Benchmarks Fit
for Purpose? [11.451691772914055]
本稿では,タスクレベル評価に関する最初の研究について述べる。
数ショット設定における性能推定器の精度を測定した。
評価者の失敗の理由を, 多くの場合, 頑健であると考えられる理由について検討する。
論文 参考訳(メタデータ) (2023-07-06T02:31:38Z) - Do LLMs Understand Social Knowledge? Evaluating the Sociability of Large
Language Models with SocKET Benchmark [14.922083834969323]
大規模言語モデル(LLM)は、様々な構文、談話、推論タスクでうまく機能することが示されている。
我々は、社会知識をテストする58のNLPタスクを含む理論駆動型ベンチマーク「SocKET」を導入する。
論文 参考訳(メタデータ) (2023-05-24T09:21:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。