SWIFT: A General Sensitive Weight Identification Framework for Fast Sensor-Transfer Pansharpening
- URL: http://arxiv.org/abs/2507.20311v1
- Date: Sun, 27 Jul 2025 15:06:05 GMT
- Title: SWIFT: A General Sensitive Weight Identification Framework for Fast Sensor-Transfer Pansharpening
- Authors: Zeyu Xia, Chenxi Sun, Tianyu Xin, Yubo Zeng, Haoyu Chen, Liang-Jian Deng,
- Abstract summary: Pansharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multispectral (LRMS) images to generate high-resolution multispectral (HRMS) images.<n>Deep learning-based methods have achieved promising performance, but they generally suffer from severe performance degradation when applied to data from unseen sensors.<n>We propose a fast and general-purpose framework for cross-sensor adaptation, SWIFT.
- Score: 16.578857961692716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pansharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multispectral (LRMS) images to generate high-resolution multispectral (HRMS) images. Although deep learning-based methods have achieved promising performance, they generally suffer from severe performance degradation when applied to data from unseen sensors. Adapting these models through full-scale retraining or designing more complex architectures is often prohibitively expensive and impractical for real-world deployment. To address this critical challenge, we propose a fast and general-purpose framework for cross-sensor adaptation, SWIFT (Sensitive Weight Identification for Fast Transfer). Specifically, SWIFT employs an unsupervised sampling strategy based on data manifold structures to balance sample selection while mitigating the bias of traditional Farthest Point Sampling, efficiently selecting only 3\% of the most informative samples from the target domain. This subset is then used to probe a source-domain pre-trained model by analyzing the gradient behavior of its parameters, allowing for the quick identification and subsequent update of only the weight subset most sensitive to the domain shift. As a plug-and-play framework, SWIFT can be applied to various existing pansharpening models. Extensive experiments demonstrate that SWIFT reduces the adaptation time from hours to approximately one minute on a single NVIDIA RTX 4090 GPU. The adapted models not only substantially outperform direct-transfer baselines but also achieve performance competitive with, and in some cases superior to, full retraining, establishing a new state-of-the-art on cross-sensor pansharpening tasks for the WorldView-2 and QuickBird datasets.
Related papers
- Progressive Alignment Degradation Learning for Pansharpening [3.7939736380306552]
Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images.<n>The Wald protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data.<n>We proposePADM, which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes.
arXiv Detail & Related papers (2025-06-25T07:07:32Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - CAT: A Conditional Adaptation Tailor for Efficient and Effective Instance-Specific Pansharpening on Real-World Data [7.471505633354803]
We propose an efficient framework that adapts to a specific input instance, completing both training and inference in a short time.<n>Our method achieves state-of-the-art performance on cross-sensor real-world data, while achieving both training and inference of $512times512$ image within $textit0.4 seconds$.
arXiv Detail & Related papers (2025-04-14T14:04:55Z) - Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection [54.545054873239295]
Deepfakes have recently raised significant trust issues and security concerns among the public.
ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance.
This work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach.
arXiv Detail & Related papers (2024-04-12T13:02:08Z) - InstantSplat: Sparse-view Gaussian Splatting in Seconds [91.77050739918037]
We introduce InstantSplat, a novel approach for addressing sparse-view 3D scene reconstruction at lightning-fast speed.<n>InstantSplat employs a self-supervised framework that optimize 3D scene representation and camera poses.<n>It achieves an acceleration of over 30x in reconstruction and improves visual quality (SSIM) from 0.3755 to 0.7624 compared to traditional SfM with 3D-GS.
arXiv Detail & Related papers (2024-03-29T17:29:58Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.<n>DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.<n>Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
Existing dataset pruning methods require training on the entire dataset.<n>We propose a straightforward, novel, and training-free hardness score named Distorting-based Learning Complexity (DLC)<n>Our method is motivated by the observation that easy samples learned faster can also be learned with fewer parameters.
arXiv Detail & Related papers (2024-02-08T02:29:33Z) - Adaptive Sparse Convolutional Networks with Global Context Enhancement
for Faster Object Detection on Drone Images [26.51970603200391]
This paper investigates optimizing the detection head based on the sparse convolution.
It suffers from inadequate integration of contextual information of tiny objects.
We propose a novel global context-enhanced adaptive sparse convolutional network.
arXiv Detail & Related papers (2023-03-25T14:42:50Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.