論文の概要: Can Foundation Models Predict Fitness for Duty?
- arxiv url: http://arxiv.org/abs/2507.20418v1
- Date: Sun, 27 Jul 2025 21:26:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.661908
- Title: Can Foundation Models Predict Fitness for Duty?
- Title(参考訳): 基礎モデルはデューティの適合性を予測できるか?
- Authors: Juan E. Tapia, Christoph Busch,
- Abstract要約: 本研究は,業務適応度予測におけるディープラーニングと基礎モデルの適用性について検討する。
それは、仕事の警戒度を決定することに関連する主観的条件として定義される。
- 参考スコア(独自算出の注目度): 8.19090399879644
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Biometric capture devices have been utilised to estimate a person's alertness through near-infrared iris images, expanding their use beyond just biometric recognition. However, capturing a substantial number of corresponding images related to alcohol consumption, drug use, and sleep deprivation to create a dataset for training an AI model presents a significant challenge. Typically, a large quantity of images is required to effectively implement a deep learning approach. Currently, training downstream models with a huge number of images based on foundational models provides a real opportunity to enhance this area, thanks to the generalisation capabilities of self-supervised models. This work examines the application of deep learning and foundational models in predicting fitness for duty, which is defined as the subject condition related to determining the alertness for work.
- Abstract(参考訳): 生体計測装置は、近赤外線虹彩画像を通して人の警戒度を推定するために使われており、生体認証以外の用途も拡張されている。
しかしながら、アルコール摂取、薬物使用、睡眠不足に関連する相当数の対応する画像をキャプチャして、AIモデルをトレーニングするためのデータセットを作成することは、重大な課題である。
通常、ディープラーニングアプローチを効果的に実装するためには、大量の画像が必要である。
現在、基礎モデルに基づく大量の画像を用いた下流モデルのトレーニングは、自己教師付きモデルの一般化能力のおかげで、この分野を強化するための真の機会となっている。
本研究は,業務の適応度を予測するための深層学習モデルと基礎モデルの適用について検討する。
関連論文リスト
- Where's the liability in the Generative Era? Recovery-based Black-Box Detection of AI-Generated Content [42.68683643671603]
APIアクセスのみを必要とする新しいブラックボックス検出フレームワークを導入する。
画像がモデル自身によって生成された可能性を測定する。
マスクされた画像入力をサポートしないブラックボックスモデルに対して、ターゲットモデル分布に適合するように訓練された費用効率の良い代理モデルを導入する。
論文 参考訳(メタデータ) (2025-05-02T05:11:35Z) - DICEPTION: A Generalist Diffusion Model for Visual Perceptual Tasks [51.439283251703635]
計算資源やデータトレーニングの限界内で、複数のタスクに対処できる優れた一般認識モデルを作成します。
DICEPTIONが複数の知覚タスクに効果的に取り組み、最先端のモデルと同等の性能を達成していることを示す。
異なるインスタンスにランダムな色を割り当てる戦略は、エンティティセグメンテーションとセマンティックセグメンテーションの両方において非常に効果的であることを示す。
論文 参考訳(メタデータ) (2025-02-24T13:51:06Z) - Foundation AI Model for Medical Image Segmentation [4.149628679539645]
ファウンデーションモデルは万能、一対一、一対一のソリューションを提供する。
医療画像のセグメンテーションでは、これら1対多または1対全の基礎モデルの必要性が高まっている。
医用画像セグメンテーションの基礎モデルを実現するための2つの経路について論じる。
論文 参考訳(メタデータ) (2024-11-05T02:31:49Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
本稿では,言語データを用いずにLVM(Large Vision Model)を学習できる新しい逐次モデリング手法を提案する。
我々は、生画像やビデオや注釈付きデータソースを表現できる共通フォーマット「視覚文」を定義した。
論文 参考訳(メタデータ) (2023-12-01T18:59:57Z) - A Simple and Efficient Baseline for Data Attribution on Images [107.12337511216228]
現在の最先端のアプローチでは、モデル予測を正確に評価するために、最大30万のモデルの大規模なアンサンブルが必要となる。
本研究では、自己教師付き学習によって事前訓練されたバックボーンの特徴空間を利用して、データ帰属を行うミニマリストベースラインに焦点を当てる。
提案手法はモデルに依存しず,大規模データセットに容易にスケールできる。
論文 参考訳(メタデータ) (2023-11-03T17:29:46Z) - Foundational Models in Medical Imaging: A Comprehensive Survey and
Future Vision [6.2847894163744105]
ファンデーションモデルは、広範囲の下流タスクに適応した大規模で事前訓練されたディープラーニングモデルである。
これらのモデルは、コンテキスト推論、一般化、テスト時の迅速な機能を促進する。
コンピュータビジョンの進歩に乗じて、医療画像はこれらのモデルへの関心も高まっている。
論文 参考訳(メタデータ) (2023-10-28T12:08:12Z) - GPT4Image: Large Pre-trained Models Help Vision Models Learn Better on Perception Task [47.1857510710807]
我々はGPT4Imageと呼ばれる新しい学習フレームワークを提案し、CNNやViTがより良い表現を学ぶのに役立つ大規模な事前学習モデルの知識を抽出する。
本研究では,様々な視覚認知タスクにおける提案アルゴリズムの有効性を検証するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-06-01T14:02:45Z) - DINOv2: Learning Robust Visual Features without Supervision [75.42921276202522]
この研究は、既存の事前学習手法、特に自己教師付き手法が、多様なソースから十分なキュレートされたデータで訓練すれば、そのような特徴を生み出すことができることを示している。
技術的な貢献の多くは、大規模なトレーニングを加速し、安定化することを目的としています。
データの観点からは、自己組織化されていないデータではなく、専用で多様でキュレートされた画像データセットを構築するための自動パイプラインを提案する。
論文 参考訳(メタデータ) (2023-04-14T15:12:19Z) - Automated wildlife image classification: An active learning tool for
ecological applications [0.44970015278813025]
野生生物カメラトラップ画像は、動物の豊富さ、生息環境の関連、行動を調べるために広く利用されている。
人工知能システムは、このタスクを引き継ぐことができるが、通常は十分なパフォーマンスを達成するために、既にラベル付けされた多数のトレーニングイメージを必要とする。
我々は,中小の画像データベースを持つ研究者が,現代の機械学習の可能性を活用できるラベル効率のよい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-28T08:51:15Z) - The effectiveness of MAE pre-pretraining for billion-scale pretraining [65.98338857597935]
モデルの初期化には自己教師付きMAE技術を用いる。
画像分類, 映像認識, 物体検出, ローショット分類, ゼロショット認識にまたがる10種類の視覚的タスクに対して, 事前学習の有効性を評価する。
論文 参考訳(メタデータ) (2023-03-23T17:56:12Z) - Vision Models Are More Robust And Fair When Pretrained On Uncurated
Images Without Supervision [38.22842778742829]
差別的な自己教師型学習は、インターネット画像の任意のランダムなグループでのトレーニングモデルを可能にする。
データ前処理や事前の仮定なしで、何十億ものランダムなイメージでモデルをトレーニングします。
フェアネス、分布シフト、地理的多様性、微粒化認識、画像コピー検出、および多くの画像分類データセットを含む50以上のベンチマークにおいて、我々のモデル性能を広範囲に研究し、検証した。
論文 参考訳(メタデータ) (2022-02-16T22:26:47Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。