HIAL: A New Paradigm for Hypergraph Active Learning via Influence Maximization
- URL: http://arxiv.org/abs/2507.20490v1
- Date: Mon, 28 Jul 2025 02:58:21 GMT
- Title: HIAL: A New Paradigm for Hypergraph Active Learning via Influence Maximization
- Authors: Yanheng Hou, Xunkai Li, Zhenjun Li, Bing Zhou, Ronghua Li, Guoren Wang,
- Abstract summary: We introduce HIAL (Hypergraph Active Learning), a native active learning framework designed specifically for hypergraphs.<n>We show that HIAL significantly outperforms state-of-the-art baselines in terms of performance, efficiency, generality, and robustness.
- Score: 25.226891661398444
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, Hypergraph Neural Networks (HNNs) have demonstrated immense potential in handling complex systems with high-order interactions. However, acquiring large-scale, high-quality labeled data for these models is costly, making Active Learning (AL) a critical technique. Existing Graph Active Learning (GAL) methods, when applied to hypergraphs, often rely on techniques like "clique expansion," which destroys the high-order structural information crucial to a hypergraph's success, thereby leading to suboptimal performance. To address this challenge, we introduce HIAL (Hypergraph Active Learning), a native active learning framework designed specifically for hypergraphs. We innovatively reformulate the Hypergraph Active Learning (HAL) problem as an Influence Maximization task. The core of HIAL is a dual-perspective influence function that, based on our novel "High-Order Interaction-Aware (HOI-Aware)" propagation mechanism, synergistically evaluates a node's feature-space coverage (via Magnitude of Influence, MoI) and its topological influence (via Expected Diffusion Value, EDV). We prove that this objective function is monotone and submodular, thus enabling the use of an efficient greedy algorithm with a formal (1-1/e) approximation guarantee. Extensive experiments on seven public datasets demonstrate that HIAL significantly outperforms state-of-the-art baselines in terms of performance, efficiency, generality, and robustness, establishing an efficient and powerful new paradigm for active learning on hypergraphs.
Related papers
- Closer through commonality: Enhancing hypergraph contrastive learning with shared groups [0.5301123956835609]
We propose a Hypergraph Fine-grained contrastive learning (HyFi) method designed to exploit the complex high-dimensional information inherent in hypergraphs.<n>Our approach effectively exploits high-dimensional hypergraph information, shows significant improvement over existing graph-based contrastive learning methods, and is efficient in terms of training speed and GPU memory cost.
arXiv Detail & Related papers (2025-02-12T14:16:45Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
We propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update.<n>To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets.
arXiv Detail & Related papers (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Adaptive Neural Message Passing for Inductive Learning on Hypergraphs [21.606287447052757]
We present HyperMSG, a novel hypergraph learning framework.
It adapts to the data and task by learning an attention weight associated with each node's degree centrality.
It is robust and outperforms state-of-the-art hypergraph learning methods on a wide range of tasks and datasets.
arXiv Detail & Related papers (2021-09-22T12:24:02Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - HNHN: Hypergraph Networks with Hyperedge Neurons [90.15253035487314]
HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges.
We demonstrate improved performance of HNHN in both classification accuracy and speed on real world datasets when compared to state of the art methods.
arXiv Detail & Related papers (2020-06-22T14:08:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.