DriveAgent-R1: Advancing VLM-based Autonomous Driving with Hybrid Thinking and Active Perception
- URL: http://arxiv.org/abs/2507.20879v1
- Date: Mon, 28 Jul 2025 14:33:15 GMT
- Title: DriveAgent-R1: Advancing VLM-based Autonomous Driving with Hybrid Thinking and Active Perception
- Authors: Weicheng Zheng, Xiaofei Mao, Nanfei Ye, Pengxiang Li, Kun Zhan, Xianpeng Lang, Hang Zhao,
- Abstract summary: Vision-Language Models (VLMs) are advancing autonomous driving, yet their potential is constrained by decision-making and passive perception.<n>We introduce DriveAgent-R1 to tackle these challenges in high-level behavioral decision-making.<n>DriveAgent-R1 features two core innovations: a Hybrid-Thinking framework that adaptively switches between efficient text-based and in-depth tool-based reasoning, and an Active Perception mechanism with a vision toolkit to proactively resolve uncertainties.
- Score: 25.389702138137217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) are advancing autonomous driving, yet their potential is constrained by myopic decision-making and passive perception, limiting reliability in complex environments. We introduce DriveAgent-R1 to tackle these challenges in long-horizon, high-level behavioral decision-making. DriveAgent-R1 features two core innovations: a Hybrid-Thinking framework that adaptively switches between efficient text-based and in-depth tool-based reasoning, and an Active Perception mechanism with a vision toolkit to proactively resolve uncertainties, thereby balancing decision-making efficiency and reliability. The agent is trained using a novel, three-stage progressive reinforcement learning strategy designed to master these hybrid capabilities. Extensive experiments demonstrate that DriveAgent-R1 achieves state-of-the-art performance, outperforming even leading proprietary large multimodal models, such as Claude Sonnet 4. Ablation studies validate our approach and confirm that the agent's decisions are robustly grounded in actively perceived visual evidence, paving a path toward safer and more intelligent autonomous systems.
Related papers
- ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving [28.378854340190973]
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning.<n>We introduce AgentThink, a pioneering unified framework that integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks.
arXiv Detail & Related papers (2025-05-21T09:27:43Z) - Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses [55.70043755630583]
vehicular AI agents are endowed with environment perception, decision-making, and action execution capabilities.<n>We propose a reliable vehicular AI agent migration framework, achieving reliable dynamic migration and efficient resource scheduling.<n>We develop a Confidence-regulated Generative Diffusion Model (CGDM) to efficiently generate AI agent migration decisions.
arXiv Detail & Related papers (2025-05-19T05:04:48Z) - Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
Vision-language models (VLMs) often suffer from limitations such as inadequate spatial perception and hallucination.<n>We propose a retrieval-augmented decision-making (RAD) framework to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes.<n>We fine-tune VLMs on a dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities.
arXiv Detail & Related papers (2025-03-18T03:25:57Z) - ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers [0.0]
This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles.<n>We propose an agentic architecture comprised of three specialized agents.<n> Experimental results demonstrate successful J-turn execution across multiple vehicle models.
arXiv Detail & Related papers (2025-03-12T03:51:41Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - A Language Agent for Autonomous Driving [31.359413767191608]
We propose a paradigm shift to integrate human-like intelligence into autonomous driving systems.
Our approach, termed Agent-Driver, transforms the traditional autonomous driving pipeline by introducing a versatile tool library.
Powered by Large Language Models (LLMs), our Agent-Driver is endowed with intuitive common sense and robust reasoning capabilities.
arXiv Detail & Related papers (2023-11-17T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.