Locally Adaptive Conformal Inference for Operator Models
- URL: http://arxiv.org/abs/2507.20975v1
- Date: Mon, 28 Jul 2025 16:37:56 GMT
- Title: Locally Adaptive Conformal Inference for Operator Models
- Authors: Trevor Harris, Yan Liu,
- Abstract summary: We introduce Local Spectral Conformal Inference (LSCI), a new framework for locally adaptive, distribution-free uncertainty quantification for neural operator models.<n>We prove approximate finite-sample marginal coverage under local exchangeability, and demonstrate significant gains in adaptivity and coverage across synthetic and real-world operator learning tasks.
- Score: 5.733004127306194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Operator models are regression algorithms for functional data and have become a key tool for emulating large-scale dynamical systems. Recent advances in deep neural operators have dramatically improved the accuracy and scalability of operator modeling, but lack an inherent notion of predictive uncertainty. We introduce Local Spectral Conformal Inference (LSCI), a new framework for locally adaptive, distribution-free uncertainty quantification for neural operator models. LSCI uses projection-based depth scoring and localized conformal inference to generate function-valued prediction sets with statistical guarantees. We prove approximate finite-sample marginal coverage under local exchangeability, and demonstrate significant gains in adaptivity and coverage across synthetic and real-world operator learning tasks.
Related papers
- Detecting and Pruning Prominent but Detrimental Neurons in Large Language Models [68.57424628540907]
Large language models (LLMs) often develop learned mechanisms specialized to specific datasets.<n>We introduce a fine-tuning approach designed to enhance generalization by identifying and pruning neurons associated with dataset-specific mechanisms.<n>Our method employs Integrated Gradients to quantify each neuron's influence on high-confidence predictions, pinpointing those that disproportionately contribute to dataset-specific performance.
arXiv Detail & Related papers (2025-07-12T08:10:10Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Probabilistic neural operators for functional uncertainty quantification [14.08907045605149]
We introduce the probabilistic neural operator (PNO), a framework for learning probability distributions over the output function space of neural operators.<n>PNO extends neural operators with generative modeling based on strictly proper scoring rules, integrating uncertainty information directly into the training process.
arXiv Detail & Related papers (2025-02-18T14:42:11Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce LUNO, a novel framework for approximate Bayesian uncertainty quantification in trained neural operators.<n>Our approach leverages model linearization to push (Gaussian) weight-space uncertainty forward to the neural operator's predictions.<n>We show that this can be interpreted as a probabilistic version of the concept of currying from functional programming, yielding a function-valued (Gaussian) random process belief.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - Function-Space Regularization in Neural Networks: A Probabilistic
Perspective [51.133793272222874]
We show that we can derive a well-motivated regularization technique that allows explicitly encoding information about desired predictive functions into neural network training.
We evaluate the utility of this regularization technique empirically and demonstrate that the proposed method leads to near-perfect semantic shift detection and highly-calibrated predictive uncertainty estimates.
arXiv Detail & Related papers (2023-12-28T17:50:56Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - IB-UQ: Information bottleneck based uncertainty quantification for
neural function regression and neural operator learning [11.5992081385106]
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks.
We incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data.
We also propose a data augmentation based information bottleneck objective which can enhance the quality of the extrapolation uncertainty.
arXiv Detail & Related papers (2023-02-07T05:56:42Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
We introduce a new framework for genetic-programming-based symbolic regression (GPSR)
GPSR uses model evidence to formulate replacement probability during the selection phase of evolution.
It is shown to increase interpretability, improve robustness to noise, and reduce overfitting when compared to a conventional GPSR implementation.
arXiv Detail & Related papers (2022-04-12T19:56:42Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms [8.949704905866888]
Supervised Machine Learning algorithms have become popular in recent years due to their superior predictive performance over traditional statistical methods.
The main focus is on interpretability, the resulting surrogate model also has reasonably good predictive performance.
arXiv Detail & Related papers (2020-07-28T23:46:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.