論文の概要: VArsity: Can Large Language Models Keep Power Engineering Students in Phase?
- arxiv url: http://arxiv.org/abs/2507.20995v1
- Date: Mon, 28 Jul 2025 17:04:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.2176
- Title: VArsity: Can Large Language Models Keep Power Engineering Students in Phase?
- Title(参考訳): VArsity: 大規模言語モデルは、パワーエンジニアリングの学生を段階的に維持できるか?
- Authors: Samuel Talkington, Daniel K. Molzahn,
- Abstract要約: 学生は、パワーファクター補正問題に対応するChatGPT出力の誤りを特定し、説明し、修正することが義務付けられていた。
このケーススタディで示すように、パワーエンジニアリング教室における教育・評価・学習におけるLLMの役割は、さらなる調査を継続する上で重要なトピックである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper provides an educational case study regarding our experience in deploying ChatGPT Large Language Models (LLMs) in the Spring 2025 and Fall 2023 offerings of ECE 4320: Power System Analysis and Control at Georgia Tech. As part of course assessments, students were tasked with identifying, explaining, and correcting errors in the ChatGPT outputs corresponding to power factor correction problems. While most students successfully identified the errors in the outputs from the GPT-4 version of ChatGPT used in Fall 2023, students found the errors from the ChatGPT o1 version much more difficult to identify in Spring 2025. As shown in this case study, the role of LLMs in pedagogy, assessment, and learning in power engineering classrooms is an important topic deserving further investigation.
- Abstract(参考訳): 本稿では,2025年春から2023年秋にかけてのECE 4320: Power System Analysis and Control at Georgia Tech における ChatGPT Large Language Models (LLMs) の導入経験を事例として紹介する。
コースアセスメントの一環として、パワーファクター補正問題に対応するChatGPT出力の誤りを特定し、説明し、修正することが課題とされた。
ほとんどの学生が2023年秋に使用したGPT-4バージョンのChatGPTの出力の誤りを発見できたが、2025年春にはChatGPTのo1バージョンからの誤りがより困難であることが判明した。
このケーススタディで示すように、パワーエンジニアリング教室における教育・評価・学習におけるLLMの役割は、さらなる調査を継続する上で重要なトピックである。
関連論文リスト
- Stepwise Verification and Remediation of Student Reasoning Errors with Large Language Model Tutors [78.53699244846285]
大規模言語モデル(LLM)は、高品質なパーソナライズされた教育を全員に拡大する機会を提供する。
LLMは、学生のエラーを正確に検知し、これらのエラーに対するフィードバックを調整するのに苦労する。
教師が学生の誤りを識別し、それに基づいて回答をカスタマイズする現実世界の教育実践に触発され、我々は学生ソリューションの検証に焦点をあてる。
論文 参考訳(メタデータ) (2024-07-12T10:11:40Z) - A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT and Automated Program Repair [19.123640635549524]
大規模言語モデル(LLM)が注目され、様々なソフトウェアエンジニアリングタスクで有望なパフォーマンスを示した。
本稿では,ChatGPTのバグ修正機能について,研究目的の異なるクリーンAPRベンチマークで概説する。
ChatGPTは、35ラウンド以内の基本的なプロンプトを使用して151のバグギープログラムのうち109を修正でき、最先端のLLM CodeT5とPLBARTを27.5%、予測精度62.4%で上回っている。
論文 参考訳(メタデータ) (2023-10-13T06:11:47Z) - The potential of large language models for improving probability
learning: A study on ChatGPT3.5 and first-year computer engineering students [0.565395466029518]
ChatGPTは確率問題を解くための大規模言語モデルである。
ChatGPTは、一般にコンピュータ工学試験で提示される確率問題の解決に使用される。
モデルが高品質な説明を提供し、どんなプログラミング言語でもソリューションを説明する能力は、大きな言語モデルが学習アシスタントとして機能する可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-09T12:54:58Z) - ChatGPT & Mechanical Engineering: Examining performance on the FE
Mechanical Engineering and Undergraduate Exams [0.0]
本研究では,機械工学の分野におけるChatGPTの機能について検討する。
教室やプロの環境での利用事例や落とし穴を調べることを目的としている。
論文 参考訳(メタデータ) (2023-09-26T20:12:26Z) - Unreflected Acceptance -- Investigating the Negative Consequences of
ChatGPT-Assisted Problem Solving in Physics Education [4.014729339820806]
大規模言語モデル(LLM)が、教育などの日常生活のセンシティブな領域に与える影響は、いまだ不明である。
本研究は,高次物理学教育に焦点をあて,問題解決戦略を検討する。
論文 参考訳(メタデータ) (2023-08-21T16:14:34Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models [57.80514758695275]
機械翻訳(MT)の品質を評価するために,大規模言語モデル(LLM)を用いることで,システムレベルでの最先端のパフォーマンスを実現する。
我々はtextbftexttError Analysis Prompting (EAPrompt) と呼ばれる新しいプロンプト手法を提案する。
本手法は,多次元品質指標 (MQM) とtextitproduces を用いて,システムレベルとセグメントレベルの両方で説明可能かつ信頼性の高いMT評価を行う。
論文 参考訳(メタデータ) (2023-03-24T05:05:03Z) - Towards Making the Most of ChatGPT for Machine Translation [75.576405098545]
ChatGPTは機械翻訳(MT)の優れた機能を示す
いくつかの先行研究により、ハイソース言語の商用システムと同等の結果が得られることが示されている。
論文 参考訳(メタデータ) (2023-03-24T03:35:21Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。