論文の概要: Page image classification for content-specific data processing
- arxiv url: http://arxiv.org/abs/2507.21114v1
- Date: Fri, 11 Jul 2025 08:30:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.891035
- Title: Page image classification for content-specific data processing
- Title(参考訳): コンテンツ固有のデータ処理のためのページイメージ分類
- Authors: Kateryna Lutsai, Pavel Straňák,
- Abstract要約: 本研究は,歴史文書ページに特化して設計された画像分類システムを開発し,評価する。
カテゴリのセットはコンテンツ固有の処理を容易にするために選ばれ、異なる分析技術を必要とするページを分離した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digitization projects in humanities often generate vast quantities of page images from historical documents, presenting significant challenges for manual sorting and analysis. These archives contain diverse content, including various text types (handwritten, typed, printed), graphical elements (drawings, maps, photos), and layouts (plain text, tables, forms). Efficiently processing this heterogeneous data requires automated methods to categorize pages based on their content, enabling tailored downstream analysis pipelines. This project addresses this need by developing and evaluating an image classification system specifically designed for historical document pages, leveraging advancements in artificial intelligence and machine learning. The set of categories was chosen to facilitate content-specific processing workflows, separating pages requiring different analysis techniques (e.g., OCR for text, image analysis for graphics)
- Abstract(参考訳): 人文科学におけるデジタル化プロジェクトは、しばしば歴史的文書から大量のページイメージを生成し、手作業によるソートと分析の重要な課題を提示する。
これらのアーカイブには、さまざまなテキストタイプ(手書き、タイプド、印刷)、グラフィカル要素(図面、地図、写真)、レイアウト(平文、テーブル、フォーム)を含む多様なコンテンツが含まれている。
この不均一なデータを効果的に処理するには、コンテンツに基づいてページを分類する自動手法が必要である。
本プロジェクトは、人工知能と機械学習の進歩を活用し、歴史的文書ページに特化して設計された画像分類システムを開発し、評価することで、このニーズに対処する。
カテゴリのセットは、コンテンツ固有の処理ワークフローを容易にし、異なる分析技術を必要とするページを分離するために選択された(例:テキストのOCR、グラフィックの画像解析)。
関連論文リスト
- TextInVision: Text and Prompt Complexity Driven Visual Text Generation Benchmark [61.412934963260724]
既存の拡散ベースのテキスト・ツー・イメージモデルは、しばしば画像に正確にテキストを埋め込むのに苦労する。
本研究では,画像に視覚テキストを統合する拡散モデルの有効性を評価するために,大規模で,かつ,迅速な複雑性駆動型ベンチマークであるTextInVisionを紹介する。
論文 参考訳(メタデータ) (2025-03-17T21:36:31Z) - Éclair -- Extracting Content and Layout with Integrated Reading Order for Documents [7.358946120326249]
本稿では,テキスト抽出ツールである'Eclairについて紹介する。
画像が与えられたら、"Eclairは、バウンディングボックスとその対応するセマンティッククラスとともに、読み順でフォーマットされたテキストを抽出できる。
このベンチマークで'Eclair'は最先端の精度を達成し、主要なメトリクスで他のメソッドよりも優れています。
論文 参考訳(メタデータ) (2025-02-06T17:07:22Z) - Unifying Multimodal Retrieval via Document Screenshot Embedding [92.03571344075607]
Document Screenshot Embedding (DSE)は、文書のスクリーンショットを統一的な入力フォーマットとして扱う新しい検索パラダイムである。
まず、Wiki-SSというウィキペディアのウェブページのスクリーンショットをコーパスとして作成し、Natural Questionsデータセットからの質問に答える。
例えば、DSEは、BM25をトップ1検索精度で17ポイント上回り、さらにスライド検索の混合モダリティタスクでは、nDCG@10で15ポイント以上OCRテキスト検索手法を著しく上回ります。
論文 参考訳(メタデータ) (2024-06-17T06:27:35Z) - Automatic Recognition of Learning Resource Category in a Digital Library [6.865460045260549]
本稿では,文書画像分類のためのヘテロジニアス学習資源(HLR)データセットを提案する。
このアプローチでは、個々の学習リソースを構成文書イメージ(シート)に分解する。
これらの画像はOCRツールを通じて処理され、テキスト表現を抽出する。
論文 参考訳(メタデータ) (2023-11-28T07:48:18Z) - Boosting Modern and Historical Handwritten Text Recognition with
Deformable Convolutions [52.250269529057014]
自由進化ページにおける手書き文字認識(HTR)は難しい画像理解課題である。
本稿では,手入力に応じて変形し,テキストの幾何学的変化に適応できる変形可能な畳み込みを導入することを提案する。
論文 参考訳(メタデータ) (2022-08-17T06:55:54Z) - Automatic Image Content Extraction: Operationalizing Machine Learning in
Humanistic Photographic Studies of Large Visual Archives [81.88384269259706]
本稿では,機械学習による大規模画像アーカイブの検索と解析のための自動画像コンテンツ抽出フレームワークを提案する。
提案する枠組みは、人文科学と社会科学のいくつかの分野に適用できる。
論文 参考訳(メタデータ) (2022-04-05T12:19:24Z) - A Survey of Historical Document Image Datasets [2.8707038627097226]
本稿では,文書画像解析のための画像データセットの体系的な文献レビューを行う。
手書きの写本や初期の版画などの史料に焦点が当てられている。
歴史的文書分析のための適切なデータセットを見つけることは、異なる機械学習アルゴリズムを用いた研究を促進するための重要な前提条件である。
論文 参考訳(メタデータ) (2022-03-16T09:56:48Z) - Digital Editions as Distant Supervision for Layout Analysis of Printed
Books [76.29918490722902]
本稿では,この意味的マークアップを,レイアウト解析モデルのトレーニングと評価のための遠隔監視として利用する手法について述べる。
DTA(Deutsches Textarchiv)の50万ページにわたるモデルアーキテクチャの実験では、これらの領域レベルの評価手法と画素レベルのメトリクスとワードレベルのメトリクスとの高い相関性を見出した。
自己学習による精度向上の可能性と、DTAで訓練されたモデルが他の歴史書に一般化できる可能性について論じる。
論文 参考訳(メタデータ) (2021-12-23T16:51:53Z) - Synthetic Document Generator for Annotation-free Layout Recognition [15.657295650492948]
本稿では,空間的位置,範囲,レイアウト要素のカテゴリを示すラベル付きリアル文書を自動生成する合成文書生成装置について述べる。
合成文書上で純粋に訓練された深層レイアウト検出モデルが,実文書を用いたモデルの性能と一致することを実証的に示す。
論文 参考訳(メタデータ) (2021-11-11T01:58:44Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
本稿では,階層的トピック誘導画像段落生成フレームワークを開発した。
複数の抽象レベルでの画像とテキストの相関をキャプチャするために、変分推論ネットワークを設計します。
段落生成を導くために、学習した階層的トピックと視覚的特徴を言語モデルに統合する。
論文 参考訳(メタデータ) (2021-05-10T06:55:39Z) - Handwriting Classification for the Analysis of Art-Historical Documents [6.918282834668529]
We focus on the analysis of handwriting in scanned document from the art-historic Archive of the WPI。
視覚構造に基づいて抽出されたテキストの断片をラベル付けする手書き分類モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T13:06:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。