Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
- URL: http://arxiv.org/abs/2507.21288v2
- Date: Wed, 30 Jul 2025 18:05:08 GMT
- Title: Learning Simulatable Models of Cloth with Spatially-varying Constitutive Properties
- Authors: Guanxiong Chen, Shashwat Suri, Yuhao Wu, Etienne Voulga, David I. W. Levin, Dinesh K. Pai,
- Abstract summary: We propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of complex materials.<n>Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
- Score: 8.144604823689834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Materials used in real clothing exhibit remarkable complexity and spatial variation due to common processes such as stitching, hemming, dyeing, printing, padding, and bonding. Simulating these materials, for instance using finite element methods, is often computationally demanding and slow. Worse, such methods can suffer from numerical artifacts called ``membrane locking'' that makes cloth appear artificially stiff. Here we propose a general framework, called Mass-Spring Net, for learning a simple yet efficient surrogate model that captures the effects of these complex materials using only motion observations. The cloth is discretized into a mass-spring network with unknown material parameters that are learned directly from the motion data, using a novel force-and-impulse loss function. Our approach demonstrates the ability to accurately model spatially varying material properties from a variety of data sources, and immunity to membrane locking which plagues FEM-based simulations. Compared to graph-based networks and neural ODE-based architectures, our method achieves significantly faster training times, higher reconstruction accuracy, and improved generalization to novel dynamic scenarios.
Related papers
- Latent Representation Learning of Multi-scale Thermophysics: Application to Dynamics in Shocked Porous Energetic Material [0.05057680722486273]
We propose an alternative meta-learning approach motivated by the idea of tokenization in natural language processing.<n>We show that one can learn a reduced representation of the micro-scale physics to accelerate the meso-scale learning process.<n>The proposed approach accelerates the development of closure models by leveraging inexpensive micro-scale simulations and fast training over a small meso-scale dataset.
arXiv Detail & Related papers (2025-06-15T23:28:33Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Physics-Enhanced Multi-fidelity Learning for Optical Surface Imprint [1.0878040851638]
We propose a novel method to use multi-fidelity neural networks (MFNN) to solve this inverse problem.
We build up the NN model via pure simulation data, and then bridge the sim-to-real gap via transfer learning.
Considering the difficulty of collecting real experimental data, we use NN to dig out the unknown physics and also implant the known physics into the transfer learning framework.
arXiv Detail & Related papers (2023-11-17T01:55:15Z) - A Hierarchical Architecture for Neural Materials [13.144139872006287]
We introduce a neural appearance model that offers a new level of accuracy.
An inception-based core network structure captures material appearances at multiple scales.
We encode the inputs into frequency space, introduce a gradient-based loss, and employ it adaptive to the progress of the learning phase.
arXiv Detail & Related papers (2023-07-19T17:00:45Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
We propose to use data-driven modeling to predict a material's response without using conventional models.
The material response is modeled by learning the implicit mappings between loading conditions and the resultant displacement and/or damage fields.
We demonstrate the performance of our proposed method for a number of examples, including hyperelastic, anisotropic and brittle materials.
arXiv Detail & Related papers (2022-03-15T19:08:13Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
Synthetic-to-real transfer learning is a framework in which we pre-train models with synthetically generated images and ground-truth annotations for real tasks.
Although synthetic images overcome the data scarcity issue, it remains unclear how the fine-tuning performance scales with pre-trained models.
We observe a simple and general scaling law that consistently describes learning curves in various tasks, models, and complexities of synthesized pre-training data.
arXiv Detail & Related papers (2021-08-25T02:29:28Z) - Texture Generation with Neural Cellular Automata [64.70093734012121]
We learn a texture generator from a single template image.
We make claims that the behaviour exhibited by the NCA model is a learned, distributed, local algorithm to generate a texture.
arXiv Detail & Related papers (2021-05-15T22:05:46Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
arXiv Detail & Related papers (2020-10-28T12:43:46Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.