Latent Representation Learning of Multi-scale Thermophysics: Application to Dynamics in Shocked Porous Energetic Material
- URL: http://arxiv.org/abs/2506.12996v1
- Date: Sun, 15 Jun 2025 23:28:33 GMT
- Title: Latent Representation Learning of Multi-scale Thermophysics: Application to Dynamics in Shocked Porous Energetic Material
- Authors: Shahab Azarfar, Joseph B. Choi, Phong CH. Nguyen, Yen T. Nguyen, Pradeep Seshadri, H. S. Udaykumar, Stephen Baek,
- Abstract summary: We propose an alternative meta-learning approach motivated by the idea of tokenization in natural language processing.<n>We show that one can learn a reduced representation of the micro-scale physics to accelerate the meso-scale learning process.<n>The proposed approach accelerates the development of closure models by leveraging inexpensive micro-scale simulations and fast training over a small meso-scale dataset.
- Score: 0.05057680722486273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coupling of physics across length and time scales plays an important role in the response of microstructured materials to external loads. In a multi-scale framework, unresolved (subgrid) meso-scale dynamics is upscaled to the homogenized (macro-scale) representation of the heterogeneous material through closure models. Deep learning models trained using meso-scale simulation data are now a popular route to assimilate such closure laws. However, meso-scale simulations are computationally taxing, posing practical challenges in training deep learning-based surrogate models from scratch. In this work, we investigate an alternative meta-learning approach motivated by the idea of tokenization in natural language processing. We show that one can learn a reduced representation of the micro-scale physics to accelerate the meso-scale learning process by tokenizing the meso-scale evolution of the physical fields involved in an archetypal, albeit complex, reactive dynamics problem, \textit{viz.}, shock-induced energy localization in a porous energetic material. A probabilistic latent representation of \textit{micro}-scale dynamics is learned as building blocks for \textit{meso}-scale dynamics. The \textit{meso-}scale latent dynamics model learns the correlation between neighboring building blocks by training over a small dataset of meso-scale simulations. We compare the performance of our model with a physics-aware recurrent convolutional neural network (PARC) trained only on the full meso-scale dataset. We demonstrate that our model can outperform PARC with scarce meso-scale data. The proposed approach accelerates the development of closure models by leveraging inexpensive micro-scale simulations and fast training over a small meso-scale dataset, and can be applied to a range of multi-scale modeling problems.
Related papers
- Learning Stochastic Multiscale Models [1.8416014644193066]
We propose an approach to learn multiscale models in the form of differential equations directly from observational data.<n>We learn the parameters of the multiscale model using a modern forward-solver-free amortized variational inference method.<n>Our approach draws inspiration from physics-based multiscale modeling approaches, such as large-eddy simulation in fluid dynamics.
arXiv Detail & Related papers (2025-06-27T21:57:06Z) - A Neural Operator based Hybrid Microscale Model for Multiscale Simulation of Rate-Dependent Materials [0.7946947383637114]
We employ neural operators to predict the microscale physics, resulting in a hybrid model that combines data-driven and physics-based approaches.<n>We apply this method to time-dependent solid mechanics problems involving viscoelastic state is represented by internal variables only at the microscale.
arXiv Detail & Related papers (2025-06-20T11:25:26Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Learning to Walk from Three Minutes of Real-World Data with Semi-structured Dynamics Models [9.318262213262866]
We introduce a novel framework for learning semi-structured dynamics models for contact-rich systems.
We make accurate long-horizon predictions with substantially less data than prior methods.
We validate our approach on a real-world Unitree Go1 quadruped robot.
arXiv Detail & Related papers (2024-10-11T18:11:21Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A physics-aware deep learning model for energy localization in
multiscale shock-to-detonation simulations of heterogeneous energetic
materials [0.0]
Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials are vital to the design and control of their energy release and sensitivity.
This work proposes an efficient and accurate multiscale framework for SDT simulations of EM.
We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock-initiated EM microstructures.
arXiv Detail & Related papers (2022-11-08T21:16:00Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.