Towards self-correcting quantum codes for neutral atom arrays
- URL: http://arxiv.org/abs/2507.21396v1
- Date: Tue, 29 Jul 2025 00:08:26 GMT
- Title: Towards self-correcting quantum codes for neutral atom arrays
- Authors: Jinkang Guo, Yifan Hong, Adam Kaufman, Andrew Lucas,
- Abstract summary: "ZSZ codes" are low-overhead quantum error-correcting codes based on the group $mathbbZ_ell rtimes mathbbZ_m$.<n>We benchmark the performance of this code family under local "self-correcting" decoders.<n>These results suggest that ZSZ codes are promising candidates for scalable self-correcting quantum memories.
- Score: 2.1874189959020427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering low-overhead quantum error-correcting codes is of significant interest for fault-tolerant quantum computation. For hardware capable of long-range connectivity, the bivariate bicycle codes offer significant overhead reduction compared to surface codes with similar performance. In this work, we present "ZSZ codes", a simple non-abelian generalization of the bivariate bicycle codes based on the group $\mathbb{Z}_\ell \rtimes \mathbb{Z}_m$. We numerically demonstrate that certain instances of this code family achieve competitive performance with the bivariate bicycle codes under circuit-level depolarizing noise using a belief-propagation and ordered-statistics decoder, with an observed threshold around $0.5\%$. We also benchmark the performance of this code family under local "self-correcting" decoders, where we observe significant improvements over the bivariate bicycle codes, including evidence of a sustainable threshold around $0.095\%$, which is higher than the $0.06\%$ that we estimate for the four-dimensional toric code under the same noise model. These results suggest that ZSZ codes are promising candidates for scalable self-correcting quantum memories. Finally, we describe how ZSZ codes can be realized with neutral atoms trapped in movable tweezer arrays, where a complete round of syndrome extraction can be achieved using simple global motions of the atomic arrays.
Related papers
- Romanesco codes: Bias-tailored qLDPC codes from fractal codes [0.0]
We introduce and analyze a family of Clifford-deformed bicycle codes that are tailored for biased noise.<n>Our qLDPC codes are defined on a bipartite hexagonal lattice with limited-range gates and low-weight stabilizers.<n>We find small examples with high encoding rate that perform well for a large range of bias.
arXiv Detail & Related papers (2025-05-30T18:06:24Z) - Machine Learning Decoding of Circuit-Level Noise for Bivariate Bicycle Codes [0.42542143904778074]
We present a recurrent, transformer-based neural network designed to decode circuit-level noise on Bi Bicycle (BB) codes.<n>For the $[[72,12,6]]$ BB code, at a physical error rate of $p=0.1%$, our model achieves a logical error rate almost $5$ times lower than belief propagation.<n>These results demonstrate that machine learning decoders can out-perform conventional decoders on QLDPC codes.
arXiv Detail & Related papers (2025-04-17T15:57:16Z) - Existence and Characterisation of Bivariate Bicycle Codes [0.0]
We show that BB codes provide compact quantum memory with low overhead and enhanced error correcting capabilities.<n>We explore these codes by leveraging their ring structure and predict their dimension as well as conditions on their existence.
arXiv Detail & Related papers (2025-02-24T11:04:15Z) - High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory [0.6144680854063939]
We present a new family of quantum low-density parity-check codes, which we call radial codes.
In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance.
Their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.
arXiv Detail & Related papers (2024-06-20T16:08:06Z) - Estimating the Decoding Failure Rate of Binary Regular Codes Using Iterative Decoding [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.<n>We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
We prove that quantum Tanner codes facilitate single-shot quantum error correction (QEC) of adversarial noise.
We show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round.
arXiv Detail & Related papers (2023-06-21T18:00:01Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.