論文の概要: Shapley Uncertainty in Natural Language Generation
- arxiv url: http://arxiv.org/abs/2507.21406v1
- Date: Tue, 29 Jul 2025 00:26:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.454115
- Title: Shapley Uncertainty in Natural Language Generation
- Title(参考訳): 自然言語生成における不確かさ
- Authors: Meilin Zhu, Gaojie Jin, Xiaowei Huang, Lijun Zhang,
- Abstract要約: 質問応答タスクでは、いつ出力を信頼するかを決定することが、大きな言語モデルのアライメントに不可欠である。
セマンティックな関係の連続的な性質を捉えたシェープリーに基づく不確実性尺度を提案する。
- 参考スコア(独自算出の注目度): 18.180786418608246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In question-answering tasks, determining when to trust the outputs is crucial to the alignment of large language models (LLMs). Kuhn et al. (2023) introduces semantic entropy as a measure of uncertainty, by incorporating linguistic invariances from the same meaning. It primarily relies on setting threshold to measure the level of semantic equivalence relation. We propose a more nuanced framework that extends beyond such thresholding by developing a Shapley-based uncertainty metric that captures the continuous nature of semantic relationships. We establish three fundamental properties that characterize valid uncertainty metrics and prove that our Shapley uncertainty satisfies these criteria. Through extensive experiments, we demonstrate that our Shapley uncertainty more accurately predicts LLM performance in question-answering and other datasets, compared to similar baseline measures.
- Abstract(参考訳): 質問応答タスクでは、出力をいつ信頼するかを決めることは、大きな言語モデル(LLM)のアライメントに不可欠である。
Kuhn et al (2023) は意味的エントロピーを不確実性の尺度として導入し、同じ意味から言語的不変性を取り入れた。
主に意味的同値関係のレベルを測定するための閾値の設定に依存している。
本稿では,意味的関係の連続的な性質を捉えたShapleyベースの不確実性指標を開発することにより,そのようなしきい値を超えて,よりニュアンスの高いフレームワークを提案する。
有効な不確実性指標を特徴付ける3つの基本特性を確立し、シェープの不確実性がこれらの基準を満たすことを証明する。
より広範な実験により,我々のShapleyの不確実性は,質問応答やその他のデータセットにおけるLLM性能を,類似のベースライン測度と比較してより正確に予測できることが実証された。
関連論文リスト
- Token-Level Uncertainty Estimation for Large Language Model Reasoning [24.56760223952017]
大きな言語モデル(LLM)は印象的な機能を示していますが、その出力品質はさまざまなアプリケーションシナリオで相容れないままです。
本稿では, LLMの自己評価と, 数学的推論における生成品質の自己向上を可能にするトークンレベルの不確実性推定フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-16T22:47:32Z) - SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
SconU(Selective Conformal Uncertainity)と呼ばれる新しいアプローチを提案する。
我々は,特定の管理可能なリスクレベルで設定されたキャリブレーションの不確実性分布から,与えられたサンプルが逸脱するかどうかを決定するのに役立つ2つの共形p値を開発する。
我々のアプローチは、単一ドメインと学際的コンテキストの両方にわたる誤発見率の厳密な管理を促進するだけでなく、予測の効率を高める。
論文 参考訳(メタデータ) (2025-04-19T03:01:45Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
本稿では,新しい不確実性を考慮したステレオマッチングフレームワークを提案する。
我々はベイズリスクを不確実性の測定として採用し、データを別々に見積もり、不確実性をモデル化する。
論文 参考訳(メタデータ) (2024-12-24T23:28:20Z) - Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
大規模言語モデル(LLM)における正確な不確実性の定量化は、信頼性の高いデプロイメントに不可欠である。
LLMにおける意味的不確実性を測定するための現在の最先端手法は、厳密な双方向の包含基準に依存している。
本研究では,意味的不確実性のよりスムーズでロバストな推定を実現するためにセマンティックな埋め込みを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-30T04:41:46Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
論文 参考訳(メタデータ) (2024-08-20T09:42:26Z) - On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
大規模言語モデルは多くの場合、不確実な定量化が困難になるような自由形式の応答を生成する。
この研究はベイズ決定論の観点からこれらの課題に対処する。
本稿では,モデルの主観的不確実性とそのキャリブレーションを原理的に定量化する方法について論じる。
提案手法はブラックボックス言語モデルに適用できる。
論文 参考訳(メタデータ) (2024-06-07T18:54:40Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Ambiguity Meets Uncertainty: Investigating Uncertainty Estimation for
Word Sense Disambiguation [5.55197751179213]
既存の教師付き手法は、WSDを分類タスクとして扱い、優れたパフォーマンスを実現した。
本稿では,WSD 向けに設計されたベンチマークにおける不確実性推定(UE)を広範囲に研究する。
本研究では, モデルが適切に設計されたテストシナリオにおいて, 選択されたUEスコアを用いて, モデルによるデータとモデルの不確実性を捕捉する能力について検討し, モデルの不確実性を十分に反映するが, モデルの不確実性を過小評価する。
論文 参考訳(メタデータ) (2023-05-22T15:18:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。