Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning
- URL: http://arxiv.org/abs/2411.02125v1
- Date: Mon, 04 Nov 2024 14:36:51 GMT
- Title: Revisiting K-mer Profile for Effective and Scalable Genome Representation Learning
- Authors: Abdulkadir Celikkanat, Andres R. Masegosa, Thomas D. Nielsen,
- Abstract summary: We provide a theoretical analysis of k-mer-based representations of genomes.
We propose a lightweight and scalable model for performing metagenomic binning at the genome read level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining effective representations of DNA sequences is crucial for genome analysis. Metagenomic binning, for instance, relies on genome representations to cluster complex mixtures of DNA fragments from biological samples with the aim of determining their microbial compositions. In this paper, we revisit k-mer-based representations of genomes and provide a theoretical analysis of their use in representation learning. Based on the analysis, we propose a lightweight and scalable model for performing metagenomic binning at the genome read level, relying only on the k-mer compositions of the DNA fragments. We compare the model to recent genome foundation models and demonstrate that while the models are comparable in performance, the proposed model is significantly more effective in terms of scalability, a crucial aspect for performing metagenomic binning of real-world datasets.
Related papers
- Hyperbolic Genome Embeddings [0.6656737591902598]
We develop a novel application of hyperbolic CNNs that exploits the evolutionarily-informed structure of biological systems.<n>Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences.<n>Our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets.
arXiv Detail & Related papers (2025-07-29T10:06:17Z) - Learning Genomic Structure from $k$-mers [2.07180164747172]
We present a method for analyzing read data using contrastive learning.<n>An encoder model is trained to produce embeddings that cluster together sequences from the same genomic region.<n>The model can also be trained fully self-supervised on read data, enabling analysis without the need to construct a full genome assembly.
arXiv Detail & Related papers (2025-05-22T13:46:18Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.
By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Integrating Large Language Models for Genetic Variant Classification [12.244115429231888]
Large Language Models (LLMs) have emerged as transformative tools in genetics.
This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets.
arXiv Detail & Related papers (2024-11-07T13:45:56Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Histo-Genomic Knowledge Distillation For Cancer Prognosis From Histopathology Whole Slide Images [7.5123289730388825]
Genome-informed Hyper-Attention Network (G-HANet) is capable of effectively distilling histo-genomic knowledge during training.
Network comprises cross-modal associating branch (CAB) and hyper-attention survival branch (HSB)
arXiv Detail & Related papers (2024-03-15T06:20:09Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Graph Neural Networks for Microbial Genome Recovery [64.91162205624848]
We propose to use Graph Neural Networks (GNNs) to leverage the assembly graph when learning contig representations for metagenomic binning.
Our method, VaeG-Bin, combines variational autoencoders for learning latent representations of the individual contigs, with GNNs for refining these representations by taking into account the neighborhood structure of the contigs in the assembly graph.
arXiv Detail & Related papers (2022-04-26T12:49:51Z) - Graph Representation Learning on Tissue-Specific Multi-Omics [0.0]
We leverage a graph embedding model (i.e VGAE) to perform link prediction on tissue-specific Gene-Gene Interaction (GGI) networks.
We prove that the combination of multiple biological modalities (i.e multi-omics) leads to powerful embeddings and better link prediction performances.
arXiv Detail & Related papers (2021-07-25T17:38:45Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We propose a new approach for dealing with high-dimensional binary classification problems that combines ideas from regularization and ensembling.
We demonstrate the good performance of our method in terms of prediction accuracy and identification of key biomarkers using several medical datasets involving common diseases such as cancer, multiple sclerosis and psoriasis.
arXiv Detail & Related papers (2021-02-17T05:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.