論文の概要: Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
- arxiv url: http://arxiv.org/abs/2507.21726v1
- Date: Tue, 29 Jul 2025 12:03:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:56.154574
- Title: Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
- Title(参考訳): 木テンソルネットワークのリーマン最適化と機械学習への応用
- Authors: Marius Willner, Marco Trenti, Dirk Lebiedz,
- Abstract要約: ツリーテンソルネットワーク(TTN)は低ランク近似や量子多体シミュレーションで広く利用されている。
本稿では,TTNの基底となる微分幾何学の形式解析について述べる。
我々はTTNの固有商構造を利用する効率的な1次および2次最適化アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation. In this work, we present a formal analysis of the differential geometry underlying TTNs. Building on this foundation, we develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs. Additionally, we devise a backpropagation algorithm for training TTNs in a kernel learning setting. We validate our methods through numerical experiments on a representative machine learning task.
- Abstract(参考訳): ツリーテンソルネットワーク(TTN)は低ランク近似や量子多体シミュレーションで広く利用されている。
本稿では,TTNの基底となる微分幾何学の形式解析について述べる。
この基礎の上に構築され,TTNの固有商構造を利用する効率的な一階・二階最適化アルゴリズムを開発した。
さらに、カーネル学習環境でTTNをトレーニングするためのバックプロパゲーションアルゴリズムを考案する。
代表的機械学習タスクにおける数値実験により,本手法の有効性を検証した。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models (LLMs) [31.69308712027795]
本研究では,大規模言語モデルを用いてテンソルネットワーク構造探索(TN-SS)アルゴリズムの自動探索を行う。
人間の研究者による研究の革新を観察することにより,tnGPSと呼ばれる自動アルゴリズム発見フレームワークを提案する。
提案するフレームワークは、LCMに反復的な改良と拡張を通じて新しいTN-SSアルゴリズムを生成するよう指示する精巧なプロンプトパイプラインである。
論文 参考訳(メタデータ) (2024-02-04T12:06:13Z) - Parallel Neural Networks in Golang [0.0]
本稿では,並列ニューラルネットワーク(PNN)と新しいプログラミング言語Golangの設計と実装について述べる。
Golangとその固有の並列化サポートは、並列ニューラルネットワークシミュレーションにおいて、シーケンシャルなバリエーションに比べて処理時間が大幅に短縮されていることが証明された。
論文 参考訳(メタデータ) (2023-04-19T11:56:36Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Automatic structural optimization of tree tensor networks [0.0]
そこで本稿では,等距離線を局所的に再接続することで,ネットワーク構造を自動的に最適化するTTNアルゴリズムを提案する。
システムの基底状態に埋め込まれた絡み合い構造を,最適化TTNにおける完全二分木として効率的に可視化できることを実証した。
論文 参考訳(メタデータ) (2022-09-07T14:51:39Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
我々は、形式言語と言語学からの重み付き有限オートマトン(WFA)、機械学習で使用されるリカレントニューラルネットワーク、テンソルネットワークの3つのモデル間の接続を提示する。
本稿では,連続ベクトル入力の列上に定義された線形2-RNNに対する最初の証明可能な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T15:28:00Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - Adaptive Learning of Tensor Network Structures [6.407946291544721]
我々はTN形式を利用して汎用的で効率的な適応アルゴリズムを開発し、データからTNの構造とパラメータを学習する。
本アルゴリズムは,任意の微分対象関数を効果的に最適化する少数のパラメータでTN構造を適応的に同定することができる。
論文 参考訳(メタデータ) (2020-08-12T16:41:56Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。