Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
- URL: http://arxiv.org/abs/2507.21726v1
- Date: Tue, 29 Jul 2025 12:03:03 GMT
- Title: Riemannian Optimization on Tree Tensor Networks with Application in Machine Learning
- Authors: Marius Willner, Marco Trenti, Dirk Lebiedz,
- Abstract summary: Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation.<n>In this work, we present a formal analysis of the differential geometry underlying TTNs.<n>We develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tree tensor networks (TTNs) are widely used in low-rank approximation and quantum many-body simulation. In this work, we present a formal analysis of the differential geometry underlying TTNs. Building on this foundation, we develop efficient first- and second-order optimization algorithms that exploit the intrinsic quotient structure of TTNs. Additionally, we devise a backpropagation algorithm for training TTNs in a kernel learning setting. We validate our methods through numerical experiments on a representative machine learning task.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - tnGPS: Discovering Unknown Tensor Network Structure Search Algorithms via Large Language Models (LLMs) [31.69308712027795]
We study how to harness large language models to automatically discover new tensor network structure search (TN-SS) algorithms.
By observing how human experts innovate in research, we propose an automatic algorithm discovery framework called tnGPS.
The proposed framework is an elaborate prompting pipeline that instruct LLMs to generate new TN-SS algorithms through iterative refinement and enhancement.
arXiv Detail & Related papers (2024-02-04T12:06:13Z) - Parallel Neural Networks in Golang [0.0]
This paper describes the design and implementation of parallel neural networks (PNNs) with the novel programming language Golang.
Golang and its inherent parallelization support proved very well for parallel neural network simulation by considerable decreased processing times compared to sequential variants.
arXiv Detail & Related papers (2023-04-19T11:56:36Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Automatic structural optimization of tree tensor networks [0.0]
We propose a TTN algorithm that enables us to automatically optimize the network structure by local reconnections of isometries.
We demonstrate that the entanglement structure embedded in the ground-state of the system can be efficiently visualized as a perfect binary tree in the optimized TTN.
arXiv Detail & Related papers (2022-09-07T14:51:39Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions.
This formulation is based on Bregman and a key advantage is that its partial derivatives with respect to the network's parameters do not require the computation of derivatives of the network's activation functions.
We present several numerical results that demonstrate that these training approaches can be equally well or even better suited for the training of neural network-based classifiers and (denoising) autoencoders with sparse coding.
arXiv Detail & Related papers (2022-08-18T11:12:52Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Adaptive Learning of Tensor Network Structures [6.407946291544721]
We leverage the TN formalism to develop a generic and efficient adaptive algorithm to learn the structure and the parameters of a TN from data.
Our algorithm can adaptively identify TN structures with small number of parameters that effectively optimize any differentiable objective function.
arXiv Detail & Related papers (2020-08-12T16:41:56Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.