Bayesian Neural Network Surrogates for Bayesian Optimization of Carbon Capture and Storage Operations
- URL: http://arxiv.org/abs/2507.21803v1
- Date: Tue, 29 Jul 2025 13:40:46 GMT
- Title: Bayesian Neural Network Surrogates for Bayesian Optimization of Carbon Capture and Storage Operations
- Authors: Sofianos Panagiotis Fotias, Vassilis Gaganis,
- Abstract summary: Carbon Capture and Storage (CCS) stands as a pivotal technology for fostering a sustainable future.<n>This paper delivers a comparative evaluation of strategies for optimizing decision variables in CCS project development.<n>Various novel models were examined and compared within a BO framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Carbon Capture and Storage (CCS) stands as a pivotal technology for fostering a sustainable future. The process, which involves injecting supercritical CO$_2$ into underground formations, a method already widely used for Enhanced Oil Recovery, serves a dual purpose: it not only curbs CO$_2$ emissions and addresses climate change but also extends the operational lifespan and sustainability of oil fields and platforms, easing the shift toward greener practices. This paper delivers a thorough comparative evaluation of strategies for optimizing decision variables in CCS project development, employing a derivative-free technique known as Bayesian Optimization. In addition to Gaussian Processes, which usually serve as the gold standard in BO, various novel stochastic models were examined and compared within a BO framework. This research investigates the effectiveness of utilizing more exotic stochastic models than GPs for BO in environments where GPs have been shown to underperform, such as in cases with a large number of decision variables or multiple objective functions that are not similarly scaled. By incorporating Net Present Value (NPV) as a key objective function, the proposed framework demonstrates its potential to improve economic viability while ensuring the sustainable deployment of CCS technologies. Ultimately, this study represents the first application in the reservoir engineering industry of the growing body of BO research, specifically in the search for more appropriate stochastic models, highlighting its potential as a preferred method for enhancing sustainability in the energy sector.
Related papers
- Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies [57.23978190717341]
We develop a Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO$ plume migration.<n>The model is trained on a comprehensive dataset generated from realistic subsurface parameters.<n>We present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites.
arXiv Detail & Related papers (2025-03-14T02:58:24Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models [16.93272879722972]
OpenCarbonEval is a framework for integrating large-scale models across diverse modalities to predict carbon emissions.
We show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models.
arXiv Detail & Related papers (2024-05-21T14:50:20Z) - Surpassing legacy approaches to PWR core reload optimization with single-objective Reinforcement learning [0.0]
We have developed methods based on Deep Reinforcement Learning (DRL) for both single- and multi-objective optimization.
In this paper, we demonstrate the advantage of our RL-based approach, specifically using Proximal Policy Optimization (PPO)
PPO adapts its search capability via a policy with learnable weights, allowing it to function as both a global and local search method.
arXiv Detail & Related papers (2024-02-16T19:35:58Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Optimizing Carbon Storage Operations for Long-Term Safety [24.873407623150033]
We study the decision-making process for carbon storage operations as a partially observable Markov decision process (POMDP)
We solve the POMDP using belief state planning to optimize injector and monitoring well locations, with the goal of maximizing stored CO2 while maintaining safety.
We introduce a neural network surrogate model for the POMDP decision-making process to handle the complex dynamics of the multi-phase flow.
arXiv Detail & Related papers (2023-04-19T00:20:50Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Joint Study of Above Ground Biomass and Soil Organic Carbon for Total
Carbon Estimation using Satellite Imagery in Scotland [0.0]
Land Carbon verification has long been a challenge in the carbon credit market.
Remote sensing techniques enable new approaches to monitor changes in Above Ground Biomass (AGB) and Soil Organic Carbon (SOC)
arXiv Detail & Related papers (2022-05-08T20:23:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.