Discovering Interpretable Ordinary Differential Equations from Noisy Data
- URL: http://arxiv.org/abs/2507.21841v1
- Date: Tue, 29 Jul 2025 14:19:59 GMT
- Title: Discovering Interpretable Ordinary Differential Equations from Noisy Data
- Authors: Rahul Golder, M. M. Faruque Hasan,
- Abstract summary: We propose an unsupervised parameter estimation methodology that finds an approximate general solution, followed by a spline transformation to linearly estimate the coefficients of the governing ordinary differential equation (ODE)<n>The approximate general solution is postulated using the same functional form as the analytical solution of a general homogeneous, linear, constant-coefficient ODE.<n>The methodology is also robust to noisy data and thus allows the integration of data-driven techniques into real experimental setting for data-driven learning of physical phenomena.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The data-driven discovery of interpretable models approximating the underlying dynamics of a physical system has gained attraction in the past decade. Current approaches employ pre-specified functional forms or basis functions and often result in models that lack physical meaning and interpretability, let alone represent the true physics of the system. We propose an unsupervised parameter estimation methodology that first finds an approximate general solution, followed by a spline transformation to linearly estimate the coefficients of the governing ordinary differential equation (ODE). The approximate general solution is postulated using the same functional form as the analytical solution of a general homogeneous, linear, constant-coefficient ODE. An added advantage is its ability to produce a high-fidelity, smooth functional form even in the presence of noisy data. The spline approximation obtains gradient information from the functional form which are linearly independent and creates the basis of the gradient matrix. This gradient matrix is used in a linear system to find the coefficients of the ODEs. From the case studies, we observed that our modeling approach discovers ODEs with high accuracy and also promotes sparsity in the solution without using any regularization techniques. The methodology is also robust to noisy data and thus allows the integration of data-driven techniques into real experimental setting for data-driven learning of physical phenomena.
Related papers
- Learning Nonlinear Dynamics in Physical Modelling Synthesis using Neural Ordinary Differential Equations [13.755383470312001]
A modal decomposition leads to a coupled nonlinear system of ordinary differential equations.<n>Recent work in applied machine learning approaches has been used to model lumped dynamic systems automatically from data.<n>We show that the model can be trained to reproduce the nonlinear dynamics of the system.
arXiv Detail & Related papers (2025-05-15T17:17:21Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.<n>Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.<n>Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - KAN/MultKAN with Physics-Informed Spline fitting (KAN-PISF) for ordinary/partial differential equation discovery of nonlinear dynamic systems [0.0]
There is a dire need to interpret the machine learning models to develop a physical understanding of dynamic systems.
In this study, an equation discovery framework is proposed that includes i) sequentially regularized derivatives for denoising (SRDD) algorithm to denoise the measure data, ii) KAN to identify the equation structure and suggest relevant nonlinear functions.
arXiv Detail & Related papers (2024-11-18T18:14:51Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.