論文の概要: PHAX: A Structured Argumentation Framework for User-Centered Explainable AI in Public Health and Biomedical Sciences
- arxiv url: http://arxiv.org/abs/2507.22009v1
- Date: Tue, 29 Jul 2025 17:00:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:56.764972
- Title: PHAX: A Structured Argumentation Framework for User-Centered Explainable AI in Public Health and Biomedical Sciences
- Title(参考訳): PHAX: 公衆衛生・バイオメディカル科学におけるユーザ中心型説明可能なAIのための構造化論証フレームワーク
- Authors: Bahar İlgen, Akshat Dubey, Georges Hattab,
- Abstract要約: 我々は、AI出力のための人間中心の説明を生成するために、PHAX-a Public Health ArgumentationとeXplainabilityフレームワークを導入する。
PHAXは、デファシブル推論、適応自然言語技術、ユーザモデリングを組み合わせた多層アーキテクチャである。
医療用語の簡略化,患者・臨床コミュニケーション,政策正当性といったユースケースを通じて,PHAXの適用性を示す。
- 参考スコア(独自算出の注目度): 0.5120567378386615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring transparency and trust in AI-driven public health and biomedical sciences systems requires more than accurate predictions-it demands explanations that are clear, contextual, and socially accountable. While explainable AI (XAI) has advanced in areas like feature attribution and model interpretability, most methods still lack the structure and adaptability needed for diverse health stakeholders, including clinicians, policymakers, and the general public. We introduce PHAX-a Public Health Argumentation and eXplainability framework-that leverages structured argumentation to generate human-centered explanations for AI outputs. PHAX is a multi-layer architecture combining defeasible reasoning, adaptive natural language techniques, and user modeling to produce context-aware, audience-specific justifications. More specifically, we show how argumentation enhances explainability by supporting AI-driven decision-making, justifying recommendations, and enabling interactive dialogues across user types. We demonstrate the applicability of PHAX through use cases such as medical term simplification, patient-clinician communication, and policy justification. In particular, we show how simplification decisions can be modeled as argument chains and personalized based on user expertise-enhancing both interpretability and trust. By aligning formal reasoning methods with communicative demands, PHAX contributes to a broader vision of transparent, human-centered AI in public health.
- Abstract(参考訳): AI駆動の公衆衛生とバイオメディカルサイエンスシステムに対する透明性と信頼を保証するには、正確な予測以上のものが必要です。
説明可能なAI(XAI)は、機能属性やモデル解釈可能性などの分野で進歩しているが、ほとんどの手法は、臨床医、政策立案者、一般大衆を含む多様な健康関係者に必要な構造と適応性に欠ける。
我々は、構造化議論を活用してAI出力の人間中心の説明を生成するPHAX(Public Health Argumentation)とeXplainabilityフレームワークを導入する。
PHAXは、デファシブル推論、適応自然言語技術、ユーザモデリングを組み合わせた多層アーキテクチャである。
具体的には、AIによる意思決定をサポートし、リコメンデーションを正当化し、ユーザタイプ間の対話を可能にすることによって、議論が説明可能性を高める方法を示す。
医療用語の簡略化,患者・臨床コミュニケーション,政策正当性といったユースケースを通じて,PHAXの適用性を示す。
特に、単純化決定を議論連鎖としてモデル化し、ユーザの専門知識に基づいてパーソナライズし、解釈可能性と信頼を両立させる方法を示す。
PHAXは、正式な推論手法をコミュニケーション要求と整合させることで、公衆衛生における透明で人間中心のAIというより広いビジョンに寄与する。
関連論文リスト
- Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting [43.110187812734864]
視覚的説明(可用性マップ)、自然言語の説明、両方のモダリティの組み合わせの3種類の説明を評価した。
テキストに基づく説明は、高い信頼度をもたらすことが分かっており、従順マップと組み合わせることで軽減される。
また、説明の質、すなわち、それがどれだけ事実的に正しい情報であり、それがAIの正しさとどの程度一致しているかが、異なる説明タイプの有用性に大きく影響していることも観察します。
論文 参考訳(メタデータ) (2024-10-16T06:43:02Z) - Transparent AI: Developing an Explainable Interface for Predicting Postoperative Complications [1.6609516435725236]
我々は5つの重要な質問に答えるために設計された説明可能なAI(XAI)フレームワークを提案する。
我々は,LIME(Local Interpretable Model-Agnostic Explanations)などの様々な手法を取り入れた。
術後合併症の予測を目的としたXAIインタフェースの試作について紹介した。
論文 参考訳(メタデータ) (2024-04-18T21:01:27Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。