論文の概要: Explainable AI meets Healthcare: A Study on Heart Disease Dataset
- arxiv url: http://arxiv.org/abs/2011.03195v1
- Date: Fri, 6 Nov 2020 05:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 04:12:57.226670
- Title: Explainable AI meets Healthcare: A Study on Heart Disease Dataset
- Title(参考訳): 説明可能なAIがヘルスケアと出会う:心臓病データセットの研究
- Authors: Devam Dave, Het Naik, Smiti Singhal, Pankesh Patel
- Abstract要約: 目的は、様々な技術を用いて説明可能なAIシステムの理解性と解釈可能性について実践者に啓蒙することである。
本論文は、心臓病データセットに基づく例を収録し、信頼性を高めるために説明可能性技術をどのように好むべきかを解明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the increasing availability of structured and unstructured data and the
swift progress of analytical techniques, Artificial Intelligence (AI) is
bringing a revolution to the healthcare industry. With the increasingly
indispensable role of AI in healthcare, there are growing concerns over the
lack of transparency and explainability in addition to potential bias
encountered by predictions of the model. This is where Explainable Artificial
Intelligence (XAI) comes into the picture. XAI increases the trust placed in an
AI system by medical practitioners as well as AI researchers, and thus,
eventually, leads to an increasingly widespread deployment of AI in healthcare.
In this paper, we present different interpretability techniques. The aim is
to enlighten practitioners on the understandability and interpretability of
explainable AI systems using a variety of techniques available which can be
very advantageous in the health-care domain. Medical diagnosis model is
responsible for human life and we need to be confident enough to treat a
patient as instructed by a black-box model. Our paper contains examples based
on the heart disease dataset and elucidates on how the explainability
techniques should be preferred to create trustworthiness while using AI systems
in healthcare.
- Abstract(参考訳): 構造化データと非構造化データの可用性の向上と分析技術の急速な進歩により、人工知能(AI)は医療産業に革命をもたらしている。
医療におけるAIの役割がますます不可欠になっている中で、モデルの予測によって生じる潜在的なバイアスに加えて、透明性と説明可能性の欠如に関する懸念が高まっている。
そこで、説明可能な人工知能(XAI)が登場する。
XAIは、医療従事者やAI研究者によるAIシステムの信頼性を高め、最終的には医療へのAIの展開が拡大する。
本稿では,異なる解釈可能性手法を提案する。
目的は、医療分野において非常に有利な様々な技術を用いて、説明可能なAIシステムの理解性と解釈可能性について実践者に啓蒙することである。
医療診断モデルは人間の生活に責任を持ち,ブラックボックスモデルによって指導された患者を治療するには十分な自信が必要である。
本論文は、心臓病データセットに基づく例を含み、医療にAIシステムを使用する場合の信頼性を高めるために、説明可能性技術がどのように望ましいかを解明する。
関連論文リスト
- AI Readiness in Healthcare through Storytelling XAI [0.5120567378386615]
我々は,マルチタスク蒸留と解釈可能性技術を組み合わせて,聴衆中心の説明可能性を実現する手法を開発した。
我々の手法は、責任あるAIを実現するために、ドメインエキスパートと機械学習エキスパートの両方の信頼を高める。
論文 参考訳(メタデータ) (2024-10-24T13:30:18Z) - Explainable AI: Definition and attributes of a good explanation for health AI [0.18846515534317265]
AIシステムが推奨する方法と理由を理解するには、内部の動作と推論プロセスに関する複雑な説明が必要になる可能性がある。
AIの可能性を完全に実現するためには、安全クリティカルなAIアプリケーションの説明に関する2つの基本的な疑問に対処することが重要である。
本研究の成果は,(1)健康AIにおける説明を構成するものの定義,(2)健康AIにおける良い説明を特徴付ける属性の包括的リストを含む。
論文 参考訳(メタデータ) (2024-09-09T16:56:31Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - It is not "accuracy vs. explainability" -- we need both for trustworthy
AI systems [0.0]
私たちは、AI技術が医療、ビジネス、交通、日常生活の多くの側面に影響を与えつつある、AI経済と社会の出現を目撃しています。
しかし、AIシステムはエラーを発生させ、バイアスを示し、データのノイズに敏感になり、しばしば技術的および司法的透明性が欠如し、その採用における信頼と課題が減少する可能性がある。
これらの最近の欠点や懸念は、科学的に記録されているだけでなく、自動運転車による事故、医療の偏見、有色人種のための雇用と顔認識システムなど、一般的な報道でも報告されている。
論文 参考訳(メタデータ) (2022-12-16T23:33:10Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。