論文の概要: Transparent AI: Developing an Explainable Interface for Predicting Postoperative Complications
- arxiv url: http://arxiv.org/abs/2404.16064v1
- Date: Thu, 18 Apr 2024 21:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 10:36:53.685178
- Title: Transparent AI: Developing an Explainable Interface for Predicting Postoperative Complications
- Title(参考訳): Transparent AI: 術後合併症を予測するための説明可能なインターフェースの開発
- Authors: Yuanfang Ren, Chirayu Tripathi, Ziyuan Guan, Ruilin Zhu, Victoria Hougha, Yingbo Ma, Zhenhong Hu, Jeremy Balch, Tyler J. Loftus, Parisa Rashidi, Benjamin Shickel, Tezcan Ozrazgat-Baslanti, Azra Bihorac,
- Abstract要約: 我々は5つの重要な質問に答えるために設計された説明可能なAI(XAI)フレームワークを提案する。
我々は,LIME(Local Interpretable Model-Agnostic Explanations)などの様々な手法を取り入れた。
術後合併症の予測を目的としたXAIインタフェースの試作について紹介した。
- 参考スコア(独自算出の注目度): 1.6609516435725236
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given the sheer volume of surgical procedures and the significant rate of postoperative fatalities, assessing and managing surgical complications has become a critical public health concern. Existing artificial intelligence (AI) tools for risk surveillance and diagnosis often lack adequate interpretability, fairness, and reproducibility. To address this, we proposed an Explainable AI (XAI) framework designed to answer five critical questions: why, why not, how, what if, and what else, with the goal of enhancing the explainability and transparency of AI models. We incorporated various techniques such as Local Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), counterfactual explanations, model cards, an interactive feature manipulation interface, and the identification of similar patients to address these questions. We showcased an XAI interface prototype that adheres to this framework for predicting major postoperative complications. This initial implementation has provided valuable insights into the vast explanatory potential of our XAI framework and represents an initial step towards its clinical adoption.
- Abstract(参考訳): 外科手術の量と術後死亡率を考えると,外科合併症の評価と管理は公衆衛生上重要な問題となっている。
リスク監視と診断のための既存の人工知能(AI)ツールは、適切な解釈可能性、公正性、再現性に欠けることが多い。
この問題に対処するために、私たちは、なぜ、なぜ、どのように、どのように、何、何、何その他に、AIモデルの説明可能性と透明性を高めるという5つの重要な疑問に答えるために設計された、説明可能なAI(XAI)フレームワークを提案しました。
そこで我々は,LIME(Local Interpretable Model-Agnostic Explanations),SHAP(SHapley Additive ExPlanations),反ファクト的説明,モデルカード,インタラクティブな機能操作インタフェース,類似した患者の識別など,さまざまなテクニックを取り入れた。
術後合併症の予測を目的としたXAIインタフェースの試作について紹介した。
この初期実装は、我々のXAIフレームワークの膨大な説明可能性に関する貴重な洞察を与え、その臨床導入に向けた最初の一歩を示している。
関連論文リスト
- Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks [9.93411316886105]
Self-eXplainable AI (S-XAI)は、ディープラーニングモデルのトレーニングプロセスに説明可能性を直接組み込む。
本研究は,様々な画像モダリティと臨床応用を包括的に検討する。
論文 参考訳(メタデータ) (2024-10-03T09:29:28Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in
Laparoscopic and Robotic Surgery [50.3022015601057]
腹腔内ビデオから外科的ワークフローの重要なインタラクティブな側面を理解し,予測できる予測型ニューラルネットワークを提案する。
我々は,既存の手術用データセットとアプリケーションに対するアプローチを検証し,アクション・トリプレットの検出と予測を行った。
この結果は、非構造的な代替案と比較して、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2024-02-03T00:58:05Z) - Interpretable Medical Imagery Diagnosis with Self-Attentive
Transformers: A Review of Explainable AI for Health Care [2.7195102129095003]
ビジョントランスフォーマー(ViT)は、自己注意モジュールの恩恵を受け、最先端のコンピュータビジョンモデルとして登場した。
ディープラーニングモデルは複雑で、しばしば"ブラックボックス"として扱われる。
本稿では、最近のViTの進歩と、ViTの意思決定プロセスを理解するための解釈的アプローチを要約する。
論文 参考訳(メタデータ) (2023-09-01T05:01:52Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
論文 参考訳(メタデータ) (2023-08-18T08:23:47Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Brief Review of Explainable Artificial Intelligence in Healthcare [7.844015105790313]
XAIは、AIアプリケーションを構築するための技術と方法を指す。
モデル説明可能性と解釈可能性は、医療実践におけるAIモデルのデプロイを成功させる上で不可欠である。
論文 参考訳(メタデータ) (2023-04-04T05:41:57Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。