論文の概要: Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search
- arxiv url: http://arxiv.org/abs/2507.22213v1
- Date: Tue, 29 Jul 2025 20:20:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.857888
- Title: Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search
- Title(参考訳): 行動適応型製品探索のための入出力型ニューラルクエリ再構成
- Authors: Jayanth Yetukuri, Ishita Khan,
- Abstract要約: この作業では、大規模なバイヤークエリログのマイニングと分析用に設計された堅牢なデータパイプラインが導入されている。
パイプラインは、潜在購入意図を示すパターンを体系的にキャプチャし、高忠実でインテントリッチなデータセットの構築を可能にする。
本研究は,スパースユーザ入力と複雑な製品発見目標とのギャップを埋めることにおける意図中心モデリングの価値を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding and modeling buyer intent is a foundational challenge in optimizing search query reformulation within the dynamic landscape of e-commerce search systems. This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs, with a focus on extracting fine-grained intent signals from both explicit interactions and implicit behavioral cues. Leveraging advanced sequence mining techniques and supervised learning models, the pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset. The proposed framework facilitates the development of adaptive query rewrite strategies by grounding reformulations in inferred user intent rather than surface-level lexical signals. This alignment between query rewriting and underlying user objectives enhances both retrieval relevance and downstream engagement metrics. Empirical evaluations across multiple product verticals demonstrate measurable gains in precision-oriented relevance metrics, underscoring the efficacy of intent-aware reformulation. Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals, and establish a scalable foundation for future research in user-aligned neural retrieval and ranking systems.
- Abstract(参考訳): 購入者の意図を理解し、モデル化することは、eコマース検索システムの動的な状況の中で検索クエリの再構築を最適化する上で、基本的な課題である。
この研究は、大規模なバイヤークエリログをマイニングし分析するために設計された堅牢なデータパイプラインを導入し、明示的なインタラクションと暗黙的な振る舞いキューの両方からきめ細かい意図的なシグナルを抽出することに重点を置いている。
高度なシーケンスマイニング技術と教師付き学習モデルを活用することで、パイプラインは遅延購入意図を示すパターンを体系的にキャプチャし、高忠実でインテントリッチなデータセットの構築を可能にする。
提案フレームワークは,表面レベルの語彙信号ではなく,推論されたユーザ意図の修正を基礎として,適応的なクエリ書き換え戦略の開発を容易にする。
クエリ書き換えと基礎となるユーザ目標との整合性は、検索の関連性と下流のエンゲージメントメトリクスの両方を強化する。
複数の製品にまたがる実証的な評価は、精度指向の関連度指標において測定可能な利得を示し、意図認識の改革の有効性を裏付けている。
本研究は,スパースユーザ入力と複雑な製品発見目標とのギャップを埋めることにおける意図中心モデリングの価値を強調し,ユーザ指向のニューラル検索とランキングシステムにおける将来の研究のためのスケーラブルな基盤を確立することを目的とした。
関連論文リスト
- Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
モデル適応のための統一フレームワークとして,ニューラルネットワークの再プログラム可能性を導入する。
本稿では,4つの重要な側面にまたがる情報操作アプローチを分類する分類法を提案する。
残る技術的課題や倫理的考察も分析する。
論文 参考訳(メタデータ) (2025-06-05T05:42:27Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
生成検索は、検索を自己回帰生成タスクとして再構成し、大きな言語モデルがクエリから直接ターゲット文書を生成する。
生成的検索におけるトレーニングと推論のスケーリング法則を体系的に検討し,モデルのサイズ,トレーニングデータスケール,推論時間計算が協調的に性能に与える影響について検討した。
論文 参考訳(メタデータ) (2025-03-24T17:59:03Z) - Behavior Modeling Space Reconstruction for E-Commerce Search [32.46624795081706]
検索システムは、ユーザの嗜好とクエリ項目の関連性を静的に組み合わせ、しばしば固定された論理的「and」関係を通じて、ユーザの振舞いをモデル化する。
本稿では、因果グラフとVenn図の両方を用いて、統一レンズを通して既存のアプローチを再検討する。
これらの課題を克服するために,2つのコンポーネントによる探索精度を高め,行動モデリング空間を再構築する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-30T09:17:04Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
隠れた報酬関数に影響を与える要因をモデルが決定しなければならない枠組みを導入する。
自己スループットや推論時間の増加といったアプローチが情報収集効率を向上させるかどうかを検討する。
論文 参考訳(メタデータ) (2024-12-09T12:27:21Z) - Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning [25.356999988217325]
関連モデリングは、対応するクエリに対して望ましい項目を見つけることを目的としている。
ユーザの履歴行動データから抽出された補助的なクエリ-イテム相互作用は、ユーザの検索意図をさらに明らかにするためのヒントを提供する可能性がある。
本モデルでは, 隣接する視点と対象視点の両方から, 粗粒度および細粒度の意味表現を蒸留するための多レベルコアテンションを構築している。
論文 参考訳(メタデータ) (2023-08-10T06:52:53Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。