論文の概要: Large Language Model-Based Framework for Explainable Cyberattack Detection in Automatic Generation Control Systems
- arxiv url: http://arxiv.org/abs/2507.22239v1
- Date: Tue, 29 Jul 2025 21:23:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.877471
- Title: Large Language Model-Based Framework for Explainable Cyberattack Detection in Automatic Generation Control Systems
- Title(参考訳): 自動生成制御システムにおける説明可能なサイバー攻撃検出のための大規模言語モデルベースフレームワーク
- Authors: Muhammad Sharshar, Ahmad Mohammad Saber, Davor Svetinovic, Amr M. Youssef, Deepa Kundur, Ehab F. El-Saadany,
- Abstract要約: 本稿では,機械学習(ML)と自然言語説明(LLM)を統合し,サイバー攻撃を検出するハイブリッドフレームワークを提案する。
提案するフレームワークは,解釈可能な高忠実な説明によるリアルタイム検出を効果的に実現し,スマートグリッドサイバーセキュリティにおける実行可能なAIの重要要件に対処する。
- 参考スコア(独自算出の注目度): 5.633219900330209
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing digitization of smart grids has improved operational efficiency but also introduced new cybersecurity vulnerabilities, such as False Data Injection Attacks (FDIAs) targeting Automatic Generation Control (AGC) systems. While machine learning (ML) and deep learning (DL) models have shown promise in detecting such attacks, their opaque decision-making limits operator trust and real-world applicability. This paper proposes a hybrid framework that integrates lightweight ML-based attack detection with natural language explanations generated by Large Language Models (LLMs). Classifiers such as LightGBM achieve up to 95.13% attack detection accuracy with only 0.004 s inference latency. Upon detecting a cyberattack, the system invokes LLMs, including GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o mini, to generate human-readable explanation of the event. Evaluated on 100 test samples, GPT-4o mini with 20-shot prompting achieved 93% accuracy in identifying the attack target, a mean absolute error of 0.075 pu in estimating attack magnitude, and 2.19 seconds mean absolute error (MAE) in estimating attack onset. These results demonstrate that the proposed framework effectively balances real-time detection with interpretable, high-fidelity explanations, addressing a critical need for actionable AI in smart grid cybersecurity.
- Abstract(参考訳): スマートグリッドのデジタル化が増加し、運用効率が向上しただけでなく、自動生成制御(AGC)システムをターゲットにしたFalse Data Injection Attacks(FDIA)など、新たなサイバーセキュリティ脆弱性も導入された。
機械学習(ML)とディープラーニング(DL)モデルはそのような攻撃を検知する可能性を示しているが、不透明な決定はオペレータの信頼と現実の応用性を制限している。
本稿では,Large Language Models (LLMs) が生成する自然言語説明と,軽量MLベースの攻撃検出を統合したハイブリッドフレームワークを提案する。
LightGBMのような分類器は、最大95.13%の攻撃検出精度と0.004秒の推論遅延しか達成しない。
サイバー攻撃を検知すると、システムはGPT-3.5 Turbo、GPT-4 Turbo、GPT-4o miniなどのLCMを起動し、その事象の人間可読な説明を生成する。
100個の試験試料で評価し、20発のGPT-4o miniは攻撃目標を93%の精度で識別し、平均絶対誤差は攻撃規模を推定し0.075 pu、平均絶対誤差は2.19秒で攻撃開始を推定した。
これらの結果は、提案フレームワークがリアルタイム検出と解釈可能な高忠実な説明とを効果的にバランスし、スマートグリッドサイバーセキュリティにおける実行可能なAIの重要なニーズに対処することを実証している。
関連論文リスト
- Hybrid LLM-Enhanced Intrusion Detection for Zero-Day Threats in IoT Networks [6.087274577167399]
本稿では,GPT-2大言語モデル(LLM)の文脈理解機能と従来のシグネチャベース手法を統合した侵入検出手法を提案する。
本稿では,GPT-2による意味解析の適応性とシグネチャベースの手法の堅牢性を融合したハイブリッドIDSフレームワークを提案する。
代表的な侵入データセットを用いた実験により, 検出精度を6.3%向上し, 偽陽性率を9.0%低減し, ほぼリアルタイム応答性を維持した。
論文 参考訳(メタデータ) (2025-07-10T04:10:03Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
我々は車載ネットワーク(IVN)に対する新たな時間的脅威モデルを特定する。
これらの攻撃は、タイムエキサイティングな効果を示す悪意のあるメッセージを注入し、徐々にネットワークトラフィックを操作して車両の動作を妨害し、安全クリティカルな機能を損なう。
時間的脅威を検出するため,MDHP-Netを導入し,Multi-Dimentional Hawkes Process(MDHP)と時間的・メッセージ的特徴抽出構造を利用した。
論文 参考訳(メタデータ) (2025-04-16T08:41:24Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATEは、三成分アーキテクチャによるフィッシング検出を強化するフレームワークである。
既存のディープラーニング技術と同等ですが、説明性が向上しています。
自動AIとフィッシング検出システムにおけるユーザ信頼の重大な隔たりに対処する。
論文 参考訳(メタデータ) (2025-03-22T23:37:35Z) - Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
未学習システムのデプロイにおいて、重要で未調査の脆弱性を公開しています。
本稿では,訓練セットに存在しないデータに対して,逆学習要求を送信することにより,攻撃者がモデル精度を劣化させることができる脅威モデルを提案する。
我々は、未学習要求の正当性を検出するための様々な検証メカニズムを評価し、検証の課題を明らかにする。
論文 参考訳(メタデータ) (2024-10-12T16:47:04Z) - A Robust Multi-Stage Intrusion Detection System for In-Vehicle Network Security using Hierarchical Federated Learning [0.0]
車両内侵入検知システム(IDS)は、目に見える攻撃を検出し、新しい目に見えない攻撃に対する堅牢な防御を提供する必要がある。
これまでの作業は、CAN ID機能のみに依存していたり、手動で機能抽出する従来の機械学習(ML)アプローチを使用していました。
本稿では,これらの制約に対処するために,最先端,斬新,軽量,車内,IDS平均化,深層学習(DL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-15T21:51:56Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Real-Time Zero-Day Intrusion Detection System for Automotive Controller
Area Network on FPGAs [13.581341206178525]
本稿では,ゼロデイアタックを検出するための教師なし学習に基づく畳み込みオートエンコーダアーキテクチャを提案する。
資源制約のZynq Ultrascaleプラットフォームを対象としたAMD/XilinxのVitis-AIツールを用いてモデルを定量化する。
提案モデルでは, 未知のDoS, ファジング, スプーフィング攻撃に対して, 同一以上の分類精度 (>99.5%) を達成することができた。
論文 参考訳(メタデータ) (2024-01-19T14:36:01Z) - Evaluation of Parameter-based Attacks against Embedded Neural Networks
with Laser Injection [1.2499537119440245]
この研究は、レーザ断層注入を用いた32ビットのCortex-Mマイクロコントローラ上で、ビットフリップ攻撃(BFA)の成功例を実際に報告した。
非現実的なブルートフォース戦略を避けるために、レーザ断層モデルを考慮したパラメータから最も敏感なビット群を選択するのにシミュレーションがどのように役立つかを示す。
論文 参考訳(メタデータ) (2023-04-25T14:48:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。