Stream-level flow matching with Gaussian processes
- URL: http://arxiv.org/abs/2409.20423v5
- Date: Mon, 03 Feb 2025 14:31:17 GMT
- Title: Stream-level flow matching with Gaussian processes
- Authors: Ganchao Wei, Li Ma,
- Abstract summary: Conditional flow matching (CFM) is a family of training algorithms for fitting continuous normalizing flows (CNFs)
We extend the CFM algorithm by defining conditional probability paths along streams'', instances of latent paths that connect data pairs of source and target.
We show that this generalization of the CFM can effectively reduce the variance in the estimated marginal vector field at a moderate computational cost.
- Score: 4.935875591615496
- License:
- Abstract: Flow matching (FM) is a family of training algorithms for fitting continuous normalizing flows (CNFs). Conditional flow matching (CFM) exploits the fact that the marginal vector field of a CNF can be learned by fitting least-squares regression to the conditional vector field specified given one or both ends of the flow path. In this paper, we extend the CFM algorithm by defining conditional probability paths along ``streams'', instances of latent stochastic paths that connect data pairs of source and target, which are modeled with Gaussian process (GP) distributions. The unique distributional properties of GPs help preserve the ``simulation-free" nature of CFM training. We show that this generalization of the CFM can effectively reduce the variance in the estimated marginal vector field at a moderate computational cost, thereby improving the quality of the generated samples under common metrics. Additionally, adopting the GP on the streams allows for flexibly linking multiple correlated training data points (e.g., time series). We empirically validate our claim through both simulations and applications to image and neural time series data.
Related papers
- DFM: Interpolant-free Dual Flow Matching [0.8192907805418583]
We propose an interpolant-free dual flow matching (DFM) approach without explicit assumptions about the modeled vector field.
Experiments with the SMAP unsupervised anomaly detection show advantages of DFM when compared to the CNF trained with either maximum likelihood or FM objectives.
arXiv Detail & Related papers (2024-10-11T20:46:04Z) - Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows [2.2530496464901106]
Continuous normalizing flows (CNFs) learn the probability path between a reference distribution and a target distribution by modeling the vector field generating said path using neural networks.
Recently, Lipman et al. (2022) introduced a simple and inexpensive method for training CNFs in generative modeling, termed flow matching (FM)
In this paper, we repurpose this method for probabilistic inference by incorporating Markovian sampling methods in evaluating the FM objective, and using the learned CNF to improve Monte Carlo sampling.
arXiv Detail & Related papers (2024-05-23T10:08:19Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Flow Matching for Generative Modeling [44.66897082688762]
Flow Matching is a simulation-free approach for training Continuous Normalizing Flows (CNFs)
We find that employing FM with diffusion paths results in a more robust and stable alternative for training diffusion models.
Training CNFs using Flow Matching on ImageNet leads to state-of-the-art performance in terms of both likelihood and sample quality.
arXiv Detail & Related papers (2022-10-06T08:32:20Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.