AdapSCA-PSO: An Adaptive Localization Algorithm with AI-Based Hybrid SCA-PSO for IoT WSNs
- URL: http://arxiv.org/abs/2507.22317v1
- Date: Wed, 30 Jul 2025 01:18:54 GMT
- Title: AdapSCA-PSO: An Adaptive Localization Algorithm with AI-Based Hybrid SCA-PSO for IoT WSNs
- Authors: Ze Zhang, Qian Dong, Wenhan Wang,
- Abstract summary: This paper proposes a hybrid meta-heuristic localization algorithm.<n>It integrates the Sine Cosine Algorithm (SCA), which is effective in global search, with Particle Swarm Optimization (PSO), which excels at local search.<n> Simulation results demonstrate that, compared to standalone PSO and the unoptimized SCAPSO algorithm, the proposed method significantly reduces the number of required iterations and an average localization error reduction of 84.97%.
- Score: 11.516311202699931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate localization of sensor nodes is a fundamental requirement for the practical application of the Internet of Things (IoT). To enable robust localization across diverse environments, this paper proposes a hybrid meta-heuristic localization algorithm. Specifically, the algorithm integrates the Sine Cosine Algorithm (SCA), which is effective in global search, with Particle Swarm Optimization (PSO), which excels at local search. An adaptive switching module is introduced to dynamically select between the two algorithms. Furthermore, the initialization, fitness evaluation, and parameter settings of the algorithm have been specifically redesigned and optimized to address the characteristics of the node localization problem. Simulation results across varying numbers of sensor nodes demonstrate that, compared to standalone PSO and the unoptimized SCAPSO algorithm, the proposed method significantly reduces the number of required iterations and achieves an average localization error reduction of 84.97%.
Related papers
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
We consider a novel optimization design for multi-waveguide pinching-antenna systems.<n>The proposed GML-JO algorithm is robust to different choices and better performance compared with the existing optimization methods.
arXiv Detail & Related papers (2025-06-14T17:35:27Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - A new simplified MOPSO based on Swarm Elitism and Swarm Memory: MO-ETPSO [0.0]
Elitist PSO (MO-ETPSO) is adapted for multi-objective optimization problems.
The proposed algorithm integrates core strategies from the well-established NSGA-II approach.
A novel aspect of the algorithm is the introduction of a swarm memory and swarm elitism.
arXiv Detail & Related papers (2024-02-20T09:36:18Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
We propose the composite optimization algorithms based on the linearized proximal algorithms and the alternating direction of multipliers.
Numerical experiments on Frank's function fitting show that the proposed algorithms perform satisfactorily robustly.
arXiv Detail & Related papers (2023-03-01T15:30:29Z) - Genetically Modified Wolf Optimization with Stochastic Gradient Descent
for Optimising Deep Neural Networks [0.0]
This research aims to analyze an alternative approach to optimizing neural network (NN) weights, with the use of population-based metaheuristic algorithms.
A hybrid between Grey Wolf (GWO) and Genetic Modified Algorithms (GA) is explored, in conjunction with Gradient Descent (SGD)
This algorithm allows for a combination between exploitation and exploration, whilst also tackling the issue of high-dimensionality.
arXiv Detail & Related papers (2023-01-21T13:22:09Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
arXiv Detail & Related papers (2020-08-05T06:26:13Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.