A new simplified MOPSO based on Swarm Elitism and Swarm Memory: MO-ETPSO
- URL: http://arxiv.org/abs/2402.12856v1
- Date: Tue, 20 Feb 2024 09:36:18 GMT
- Title: A new simplified MOPSO based on Swarm Elitism and Swarm Memory: MO-ETPSO
- Authors: Ricardo Fitas
- Abstract summary: Elitist PSO (MO-ETPSO) is adapted for multi-objective optimization problems.
The proposed algorithm integrates core strategies from the well-established NSGA-II approach.
A novel aspect of the algorithm is the introduction of a swarm memory and swarm elitism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an algorithm based on Particle Swarm Optimization (PSO),
adapted for multi-objective optimization problems: the Elitist PSO (MO-ETPSO).
The proposed algorithm integrates core strategies from the well-established
NSGA-II approach, such as the Crowding Distance Algorithm, while leveraging the
advantages of Swarm Intelligence in terms of individual and social cognition. A
novel aspect of the algorithm is the introduction of a swarm memory and swarm
elitism, which may turn the adoption of NSGA-II strategies in PSO. These
features enhance the algorithm's ability to retain and utilize high-quality
solutions throughout optimization. Furthermore, all operators within the
algorithm are intentionally designed for simplicity, ensuring ease of
replication and implementation in various settings. Preliminary comparisons
with the NSGA-II algorithm for the Green Vehicle Routing Problem, both in terms
of solutions found and convergence, have yielded promising results in favor of
MO-ETPSO.
Related papers
- PAO: A general particle swarm algorithm with exact dynamics and
closed-form transition densities [0.0]
Particle swarm optimisation (PSO) approaches have proven to be highly effective in a number of application areas.
In this work, a highly-general, interpretable variant of the PSO algorithm -- particle attractor algorithm (PAO) -- is proposed.
arXiv Detail & Related papers (2023-04-28T16:19:27Z) - High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems [3.6406488220483326]
A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation.
We propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems.
We show that our proposed method is superior in terms of speed and the attained optimal solutions.
arXiv Detail & Related papers (2022-12-03T09:22:54Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
Bilevel optimization (BO) has arisen as a powerful tool for solving many modern machine learning problems.
Existing gradient-based methods require second-order derivative approximations via Jacobian- or/and Hessian-vector computations.
We propose a novel BO algorithm, which adopts Evolution Strategies (ES) based method to approximate the response Jacobian matrix in the hypergradient of BO.
arXiv Detail & Related papers (2021-10-13T19:36:50Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Motion-Encoded Particle Swarm Optimization for Moving Target Search
Using UAVs [4.061135251278187]
This paper presents a novel algorithm named the motion-encoded particle swarm optimization (MPSO) for finding a moving target with unmanned aerial vehicles (UAVs)
The proposed MPSO is developed to solve that problem by encoding the search trajectory as a series of UAV motion paths evolving over the generation of particles in a PSO algorithm.
Results from extensive simulations with existing methods show that the proposed MPSO improves the detection performance by 24% and time performance by 4.71 times compared to the original PSO.
arXiv Detail & Related papers (2020-10-05T14:17:49Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
In this work, the goal is to apply convolutional neural network-based (CNN) deep reinforcement learning (DRL) algorithms to the field development optimization problem.
The proximal policy optimization (PPO) algorithm is considered with two CNN architectures of varying number of layers and composition.
Both networks obtained policies that provide satisfactory results when compared to a hybrid particle swarm optimization - mesh adaptive direct search (PSO-MADS) algorithm.
arXiv Detail & Related papers (2020-08-05T06:26:13Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.