UFV-Splatter: Pose-Free Feed-Forward 3D Gaussian Splatting Adapted to Unfavorable Views
- URL: http://arxiv.org/abs/2507.22342v1
- Date: Wed, 30 Jul 2025 02:56:47 GMT
- Title: UFV-Splatter: Pose-Free Feed-Forward 3D Gaussian Splatting Adapted to Unfavorable Views
- Authors: Yuki Fujimura, Takahiro Kushida, Kazuya Kitano, Takuya Funatomi, Yasuhiro Mukaigawa,
- Abstract summary: A common rendering setup for training feed-forward approaches places a 3D object at the world origin and renders it from cameras pointed toward the origin.<n>We introduce a novel adaptation framework that enables pretrained pose-free feed-forward 3DGS models to handle unfavorable views.
- Score: 9.974268614169155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a pose-free, feed-forward 3D Gaussian Splatting (3DGS) framework designed to handle unfavorable input views. A common rendering setup for training feed-forward approaches places a 3D object at the world origin and renders it from cameras pointed toward the origin -- i.e., from favorable views, limiting the applicability of these models to real-world scenarios involving varying and unknown camera poses. To overcome this limitation, we introduce a novel adaptation framework that enables pretrained pose-free feed-forward 3DGS models to handle unfavorable views. We leverage priors learned from favorable images by feeding recentered images into a pretrained model augmented with low-rank adaptation (LoRA) layers. We further propose a Gaussian adapter module to enhance the geometric consistency of the Gaussians derived from the recentered inputs, along with a Gaussian alignment method to render accurate target views for training. Additionally, we introduce a new training strategy that utilizes an off-the-shelf dataset composed solely of favorable images. Experimental results on both synthetic images from the Google Scanned Objects dataset and real images from the OmniObject3D dataset validate the effectiveness of our method in handling unfavorable input views.
Related papers
- No Pose at All: Self-Supervised Pose-Free 3D Gaussian Splatting from Sparse Views [17.221166075016257]
SPFSplat is an efficient framework for 3D Gaussian splatting from sparse multi-view images.<n>It employs a shared feature extraction backbone, enabling simultaneous prediction of 3D Gaussian primitives and camera poses.<n>It achieves state-of-the-art performance in novel view synthesis even under significant viewpoint changes and limited image overlap.
arXiv Detail & Related papers (2025-08-02T03:19:13Z) - UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting [64.31900521467362]
No existing pre-training method is equally effective for both object- and scene-level point clouds.<n>We introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture.
arXiv Detail & Related papers (2025-06-11T17:23:21Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.<n>Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Hybrid bundle-adjusting 3D Gaussians for view consistent rendering with pose optimization [2.8990883469500286]
We introduce a hybrid bundle-adjusting 3D Gaussians model that enables view-consistent rendering with pose optimization.
This model jointly extract image-based and neural 3D representations to simultaneously generate view-consistent images and camera poses within forward-facing scenes.
arXiv Detail & Related papers (2024-10-17T07:13:00Z) - 3D Gaussian Editing with A Single Image [19.662680524312027]
We introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting.
Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint.
Experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation.
arXiv Detail & Related papers (2024-08-14T13:17:42Z) - GGRt: Towards Pose-free Generalizable 3D Gaussian Splatting in Real-time [112.32349668385635]
GGRt is a novel approach to generalizable novel view synthesis that alleviates the need for real camera poses.
As the first pose-free generalizable 3D-GS framework, GGRt achieves inference at $ge$ 5 FPS and real-time rendering at $ge$ 100 FPS.
arXiv Detail & Related papers (2024-03-15T09:47:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.