RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
- URL: http://arxiv.org/abs/2507.22446v1
- Date: Wed, 30 Jul 2025 07:45:03 GMT
- Title: RCR-AF: Enhancing Model Generalization via Rademacher Complexity Reduction Activation Function
- Authors: Yunrui Yu, Kafeng Wang, Hang Su, Jun Zhu,
- Abstract summary: This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness.<n>We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience.
- Score: 28.98307539597017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their widespread success, deep neural networks remain critically vulnerable to adversarial attacks, posing significant risks in safety-sensitive applications. This paper investigates activation functions as a crucial yet underexplored component for enhancing model robustness. We propose a Rademacher Complexity Reduction Activation Function (RCR-AF), a novel activation function designed to improve both generalization and adversarial resilience. RCR-AF uniquely combines the advantages of GELU (including smoothness, gradient stability, and negative information retention) with ReLU's desirable monotonicity, while simultaneously controlling both model sparsity and capacity through built-in clipping mechanisms governed by two hyperparameters, $\alpha$ and $\gamma$. Our theoretical analysis, grounded in Rademacher complexity, demonstrates that these parameters directly modulate the model's Rademacher complexity, offering a principled approach to enhance robustness. Comprehensive empirical evaluations show that RCR-AF consistently outperforms widely-used alternatives (ReLU, GELU, and Swish) in both clean accuracy under standard training and in adversarial robustness within adversarial training paradigms.
Related papers
- SEEA-R1: Tree-Structured Reinforcement Fine-Tuning for Self-Evolving Embodied Agents [31.726927520069616]
Self-Evolving Embodied Agents-R1, or SEEA-R1, is the first reinforcement fine-tuning framework designed for self-evolving embodied agents.<n>It converts sparse delayed rewards into denser intermediate signals that improve multi-step reasoning.<n>It generalizes reward estimation across tasks and scenes, supporting autonomous adaptation and reward-driven self-evolution.
arXiv Detail & Related papers (2025-06-26T18:00:07Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
Large Language Models (LLMs) show great promise in complex reasoning.<n>A prevalent issue is superficial self-reflection'', where models fail to robustly verify their own outputs.<n>We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this.
arXiv Detail & Related papers (2025-05-19T17:59:31Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
We propose Robust Fine-Tuning (RbFT) to enhance the resilience of large language models against retrieval defects.<n> Experimental results demonstrate that RbFT significantly improves the robustness of RAG systems across diverse retrieval conditions.
arXiv Detail & Related papers (2025-01-30T14:15:09Z) - Adversarial Robustness through Dynamic Ensemble Learning [0.0]
Adversarial attacks pose a significant threat to the reliability of pre-trained language models (PLMs)<n>This paper presents Adversarial Robustness through Dynamic Ensemble Learning (ARDEL), a novel scheme designed to enhance the robustness of PLMs against such attacks.
arXiv Detail & Related papers (2024-12-20T05:36:19Z) - Reward-Robust RLHF in LLMs [25.31456438114974]
Large Language Models (LLMs) continue to progress toward more advanced forms of intelligence.
The reliance on reward-model-based (RM-based) alignment methods introduces significant challenges.
We introduce a reward-robust RLHF framework aimed at addressing these fundamental challenges.
arXiv Detail & Related papers (2024-09-18T02:35:41Z) - Expressive and Generalizable Low-rank Adaptation for Large Models via Slow Cascaded Learning [55.5715496559514]
LoRA Slow Cascade Learning (LoRASC) is an innovative technique designed to enhance LoRA's expressiveness and generalization capabilities.
Our approach augments expressiveness through a cascaded learning strategy that enables a mixture-of-low-rank adaptation, thereby increasing the model's ability to capture complex patterns.
arXiv Detail & Related papers (2024-07-01T17:28:59Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Robust Reinforcement Learning in Continuous Control Tasks with
Uncertainty Set Regularization [17.322284328945194]
Reinforcement learning (RL) is recognized as lacking generalization and robustness under environmental perturbations.
We propose a new regularizer named $textbfU$ncertainty $textbfS$et $textbfR$egularizer (USR)
arXiv Detail & Related papers (2022-07-05T12:56:08Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.