Towards Interpretable Renal Health Decline Forecasting via Multi-LMM Collaborative Reasoning Framework
- URL: http://arxiv.org/abs/2507.22464v1
- Date: Wed, 30 Jul 2025 08:11:06 GMT
- Title: Towards Interpretable Renal Health Decline Forecasting via Multi-LMM Collaborative Reasoning Framework
- Authors: Peng-Yi Wu, Pei-Cing Huang, Ting-Yu Chen, Chantung Ku, Ming-Yen Lin, Yihuang Kang,
- Abstract summary: We propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting.<n>It incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability.<n>Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
- Score: 12.732588046754783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and interpretable prediction of estimated glomerular filtration rate (eGFR) is essential for managing chronic kidney disease (CKD) and supporting clinical decisions. Recent advances in Large Multimodal Models (LMMs) have shown strong potential in clinical prediction tasks due to their ability to process visual and textual information. However, challenges related to deployment cost, data privacy, and model reliability hinder their adoption. In this study, we propose a collaborative framework that enhances the performance of open-source LMMs for eGFR forecasting while generating clinically meaningful explanations. The framework incorporates visual knowledge transfer, abductive reasoning, and a short-term memory mechanism to enhance prediction accuracy and interpretability. Experimental results show that the proposed framework achieves predictive performance and interpretability comparable to proprietary models. It also provides plausible clinical reasoning processes behind each prediction. Our method sheds new light on building AI systems for healthcare that combine predictive accuracy with clinically grounded interpretability.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs [39.47350988195002]
Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction.<n>We propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture.<n>Our framework consists of a linkage agent for mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions.
arXiv Detail & Related papers (2025-07-03T16:35:11Z) - Doctor-in-the-Loop: An Explainable, Multi-View Deep Learning Framework for Predicting Pathological Response in Non-Small Cell Lung Cancer [0.6800826356148091]
Non-small cell lung cancer (NSCLC) remains a major global health challenge.<n>We propose Doctor-in-the-Loop, a novel framework that integrates expert-driven domain knowledge with explainable artificial intelligence techniques.<n>Our approach employs a gradual multi-view strategy, progressively refining the model's focus from broad contextual features to finer, lesion-specific details.
arXiv Detail & Related papers (2025-02-21T16:35:30Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability [1.90365714903665]
This study presents a novel framework called Bayesian Kolmogorov Arnold Networks (BKANs)
BKANs combines the expressive capacity of Kolmogorov Arnold Networks with Bayesian inference.
Our method provides useful insights into prediction confidence and decision boundaries and outperforms traditional deep learning models in terms of prediction accuracy.
arXiv Detail & Related papers (2024-08-05T10:38:34Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Clinical outcome prediction under hypothetical interventions -- a
representation learning framework for counterfactual reasoning [31.97813934144506]
We introduce a new representation learning framework, which considers the provision of counterfactual explanations as an embedded property of the risk model.
Our results suggest that our proposed framework has the potential to help researchers and clinicians improve personalised care.
arXiv Detail & Related papers (2022-05-15T09:41:16Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.