BALSAM: A Platform for Benchmarking Arabic Large Language Models
- URL: http://arxiv.org/abs/2507.22603v1
- Date: Wed, 30 Jul 2025 12:16:39 GMT
- Title: BALSAM: A Platform for Benchmarking Arabic Large Language Models
- Authors: Rawan Al-Matham, Kareem Darwish, Raghad Al-Rasheed, Waad Alshammari, Muneera Alhoshan, Amal Almazrua, Asma Al Wazrah, Mais Alheraki, Firoj Alam, Preslav Nakov, Norah Alzahrani, Eman alBilali, Nizar Habash, Abdelrahman El-Sheikh, Muhammad Elmallah, Haonan Li, Hamdy Mubarak, Mohamed Anwar, Zaid Alyafeai, Ahmed Abdelali, Nora Altwairesh, Maram Hasanain, Abdulmohsen Al Thubaity, Shady Shehata, Bashar Alhafni, Injy Hamed, Go Inoue, Khalid Elmadani, Ossama Obeid, Fatima Haouari, Tamer Elsayed, Emad Alghamdi, Khalid Almubarak, Saied Alshahrani, Ola Aljarrah, Safa Alajlan, Areej Alshaqarawi, Maryam Alshihri, Sultana Alghurabi, Atikah Alzeghayer, Afrah Altamimi, Abdullah Alfaifi, Abdulrahman AlOsaimy,
- Abstract summary: BALSAM is a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation.<n>It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation.
- Score: 34.50348949235453
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The impressive advancement of Large Language Models (LLMs) in English has not been matched across all languages. In particular, LLM performance in Arabic lags behind, due to data scarcity, linguistic diversity of Arabic and its dialects, morphological complexity, etc. Progress is further hindered by the quality of Arabic benchmarks, which typically rely on static, publicly available data, lack comprehensive task coverage, or do not provide dedicated platforms with blind test sets. This makes it challenging to measure actual progress and to mitigate data contamination. Here, we aim to bridge these gaps. In particular, we introduce BALSAM, a comprehensive, community-driven benchmark aimed at advancing Arabic LLM development and evaluation. It includes 78 NLP tasks from 14 broad categories, with 52K examples divided into 37K test and 15K development, and a centralized, transparent platform for blind evaluation. We envision BALSAM as a unifying platform that sets standards and promotes collaborative research to advance Arabic LLM capabilities.
Related papers
- MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation [86.7047714187813]
MMLU-ProX is a benchmark covering 29 languages, built on an English benchmark.<n>Each language version consists of 11,829 identical questions, enabling direct cross-linguistic comparisons.<n>To meet efficient evaluation needs, we provide a lite version containing 658 questions per language.
arXiv Detail & Related papers (2025-03-13T15:59:20Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.<n>One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.<n>Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs [22.121471902726892]
We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation.<n>First-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions.
arXiv Detail & Related papers (2024-09-17T17:59:25Z) - CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models [53.9835961434552]
We introduce the Chinese Instruction-Following Benchmark (CIF-Bench) to evaluate the generalizability of large language models (LLMs) to the Chinese language.
CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances.
To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance.
arXiv Detail & Related papers (2024-02-20T16:02:12Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction
Following: A Case Study of Arabic [1.0878040851638]
We employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks.
We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data.
arXiv Detail & Related papers (2023-10-23T11:40:04Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - LAraBench: Benchmarking Arabic AI with Large Language Models [26.249084464525044]
LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks.
We utilize models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM to tackle 33 distinct tasks across 61 publicly available datasets.
This involved 98 experimental setups, encompassing 296K data points, 46 hours of speech, and 30 sentences for Text-to-Speech (TTS)
arXiv Detail & Related papers (2023-05-24T10:16:16Z) - ORCA: A Challenging Benchmark for Arabic Language Understanding [8.9379057739817]
ORCA is a publicly available benchmark for Arabic language understanding evaluation.
To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models.
arXiv Detail & Related papers (2022-12-21T04:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.