MASCA: LLM based-Multi Agents System for Credit Assessment
- URL: http://arxiv.org/abs/2507.22758v1
- Date: Wed, 30 Jul 2025 15:19:38 GMT
- Title: MASCA: LLM based-Multi Agents System for Credit Assessment
- Authors: Gautam Jajoo, Pranjal A Chitale, Saksham Agarwal,
- Abstract summary: We introduce MASCA, an LLM-driven multi-agent system designed to enhance credit evaluation by mirroring real-world decision-making processes.<n>We also present a signaling game theory perspective on hierarchical multi-agent systems, offering theoretical insights into their structure and interactions.
- Score: 0.3277163122167434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in financial problem-solving have leveraged LLMs and agent-based systems, with a primary focus on trading and financial modeling. However, credit assessment remains an underexplored challenge, traditionally dependent on rule-based methods and statistical models. In this paper, we introduce MASCA, an LLM-driven multi-agent system designed to enhance credit evaluation by mirroring real-world decision-making processes. The framework employs a layered architecture where specialized LLM-based agents collaboratively tackle sub-tasks. Additionally, we integrate contrastive learning for risk and reward assessment to optimize decision-making. We further present a signaling game theory perspective on hierarchical multi-agent systems, offering theoretical insights into their structure and interactions. Our paper also includes a detailed bias analysis in credit assessment, addressing fairness concerns. Experimental results demonstrate that MASCA outperforms baseline approaches, highlighting the effectiveness of hierarchical LLM-based multi-agent systems in financial applications, particularly in credit scoring.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - FinEval-KR: A Financial Domain Evaluation Framework for Large Language Models' Knowledge and Reasoning [18.68776736676411]
FinEval-KR is a novel evaluation framework for quantifying large language models' knowledge and reasoning abilities.<n>Inspired by cognitive science, we propose a cognitive score to analyze capabilities in reasoning tasks across different cognitive levels.<n>Our experimental results reveal that LLM reasoning ability and higher-order cognitive ability are the core factors influencing reasoning accuracy.
arXiv Detail & Related papers (2025-06-18T06:21:50Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - LLM-Evaluation Tropes: Perspectives on the Validity of LLM-Evaluations [29.031539043555362]
Large Language Models (LLMs) are increasingly used to evaluate information systems.<n>Recent studies suggest that LLM-based evaluations often align with human judgments.<n>This paper examines scenarios where LLM-evaluators may falsely indicate success.
arXiv Detail & Related papers (2025-04-27T02:14:21Z) - How Strategic Agents Respond: Comparing Analytical Models with LLM-Generated Responses in Strategic Classification [9.296248945826084]
We propose using strategic advice generated by large language models to simulate human agent responses in Strategic Classification.<n>We examine five critical SC scenarios -- hiring, loan applications, school admissions, personal income, and public assistance programs.<n>We then compare the resulting agent responses with the best responses generated by existing theoretical models.
arXiv Detail & Related papers (2025-01-20T01:39:03Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
Internal mechanisms that contribute to the effectiveness of RAG systems remain underexplored.
Our experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors.
We propose several strategies to enhance RAG's efficiency and effectiveness through expert activation.
arXiv Detail & Related papers (2024-10-20T16:08:54Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Ollabench: Evaluating LLMs' Reasoning for Human-centric Interdependent Cybersecurity [0.0]
Large Language Models (LLMs) have the potential to enhance Agent-Based Modeling by better representing complex interdependent cybersecurity systems.
Existing evaluation frameworks often overlook the human factor and cognitive computing capabilities essential for interdependent cybersecurity.
I propose OllaBench, a novel evaluation framework that assesses LLMs' accuracy, wastefulness, and consistency in answering scenario-based information security compliance and non-compliance questions.
arXiv Detail & Related papers (2024-06-11T00:35:39Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
Large Language Models (LLMs) have great potential for credit scoring tasks, with strong generalization ability across multiple tasks.
We propose the first open-source comprehensive framework for exploring LLMs for credit scoring.
We then propose the first Credit and Risk Assessment Large Language Model (CALM) by instruction tuning, tailored to the nuanced demands of various financial risk assessment tasks.
arXiv Detail & Related papers (2023-10-01T03:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.