A multi-dimensional quantum estimation and model learning framework based on variational Bayesian inference
- URL: http://arxiv.org/abs/2507.23130v1
- Date: Wed, 30 Jul 2025 22:18:27 GMT
- Title: A multi-dimensional quantum estimation and model learning framework based on variational Bayesian inference
- Authors: Federico Belliardo, Erik M. Gauger, Tim H. Taminiau, Yoann Altmann, Cristian Bonato,
- Abstract summary: We present a joint model selection and parameter estimation algorithm that is fast and operable on a large number of model parameters.<n>The algorithm is based on variational Bayesian inference (VBI), which approximates the target posterior distribution.<n>We show how a regularizing prior can be used to select between competing models, each comprising a different number of parameters.
- Score: 3.7127285734321203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement and scaling of quantum technology has made the learning and identification of quantum systems and devices in highly-multidimensional parameter spaces a pressing task for a variety of applications. In many cases, the integration of real-time feedback control and adaptive choice of measurement settings places strict demands on the speed of this task. Here we present a joint model selection and parameter estimation algorithm that is fast and operable on a large number of model parameters. The algorithm is based on variational Bayesian inference (VBI), which approximates the target posterior distribution by optimizing a tractable family of distributions, making it more scalable than exact inference methods relying on sampling and that generally suffer from high variance and computational cost in high-dimensional spaces. We show how a regularizing prior can be used to select between competing models, each comprising a different number of parameters, identifying the simplest model that explains the experimental data. The regularization can further separate the degrees of freedom, e.g. quantum systems in the environment or processes, which contribute to major features in the observed dynamics, with respect to others featuring small coupling, which only contribute to a background. As an application of the introduced framework, we consider the problem of the identification of multiple individual nuclear spins with a single electron spin quantum sensor, relevant for nanoscale nuclear magnetic resonance. With the number of environmental spins unknown a priori, our Bayesian approach is able to correctly identify the model, i.e. the number of spins and their couplings. We benchmark the algorithm on both simulated and experimental data, using standard figures of merit, and demonstrating that we can estimate dozens of parameters within minutes.
Related papers
- Simulation-based inference for Precision Neutrino Physics through Neural Monte Carlo tuning [0.0]
We propose a solution using neural likelihood estimation within the simulation-based inference framework.<n>We develop two complementary neural density estimators that model likelihoods of calibration data.<n>Our framework offers flexibility to choose the most appropriate method for specific needs.
arXiv Detail & Related papers (2025-07-31T07:33:05Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Applications of model-aware reinforcement learning in Bayesian quantum
metrology [0.6138671548064355]
In Belliardo et al., arXiv:2312.16985 (2023), we introduced a procedure capable of optimizing a wide range of tasks in quantum metrology and estimation.
We take a model-based approach to the optimisation where the physics describing the system is explicitly taken into account in the training.
This exposition showcases the broad applicability of the method, which has been implemented in the qsensoropt library released on PyPI.
arXiv Detail & Related papers (2024-03-08T22:48:07Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Benchmarking Quantum Simulators using Ergodic Quantum Dynamics [4.2392660892009255]
We analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal state.
We numerically demonstrate our protocol for a variety of quantum simulator platforms.
arXiv Detail & Related papers (2022-05-24T17:18:18Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
We propose a general numerical method, Random Sampling Neural Networks (RSNN), to utilize the pattern recognition technique for the random sampling matrix elements of an interacting many-body system via a self-supervised learning approach.
Several exactly solvable 1D models, including Ising model with transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to test the applicability of RSNN.
arXiv Detail & Related papers (2020-11-10T15:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.