LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
- URL: http://arxiv.org/abs/2507.23167v1
- Date: Thu, 31 Jul 2025 00:35:45 GMT
- Title: LENS: Learning Ensemble Confidence from Neural States for Multi-LLM Answer Integration
- Authors: Jizhou Guo,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive performance across various tasks.<n>We propose LENS (Learning ENsemble confidence from Neural States), a novel approach that learns to estimate model confidence by analyzing internal representations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive performance across various tasks, with different models excelling in distinct domains and specific abilities. Effectively combining the predictions of multiple LLMs is crucial for enhancing system robustness and performance. However, existing ensemble methods often rely on simple techniques like voting or logits ensembling, which overlook the varying confidence and reliability of models in different contexts. In this work, we propose LENS (Learning ENsemble confidence from Neural States), a novel approach that learns to estimate model confidence by analyzing internal representations. For each LLM, we train a lightweight linear confidence predictor that leverages layer-wise hidden states and normalized probabilities as inputs. This allows for more nuanced weighting of model predictions based on their context-dependent reliability. Our method does not require modifying the model parameters and requires negligible additional computation. Experimental results on multiple-choice and boolean question-answering tasks demonstrate that LENS outperforms traditional ensemble methods by a substantial margin. Our findings suggest that internal representations provide valuable signals for determining model confidence and can be effectively leveraged for ensemble learning.
Related papers
- An Information-Theoretic Perspective on Multi-LLM Uncertainty Estimation [7.018119896897734]
Large language models (LLMs) often behave inconsistently across inputs, indicating uncertainty and motivating the need for its quantification in high-stakes settings.<n>We propose MUSE (Multi-LLM Uncertainty via Subset Ensembles), a simple information-theoretic method that uses Jensen-Shannon Divergence to identify and aggregate well-calibrated subsets of LLMs.<n>Experiments on binary prediction tasks demonstrate improved calibration and predictive performance compared to single-model and naive ensemble baselines.
arXiv Detail & Related papers (2025-07-09T19:13:25Z) - Statistical Runtime Verification for LLMs via Robustness Estimation [0.0]
Adversarial robustness verification is essential for ensuring the safe deployment of Large Language Models (LLMs) in runtime-critical applications.<n>This paper presents a case study adapting and extending the RoMA statistical verification framework to assess its feasibility as an online runtime robustness monitor for LLMs in black-box deployment settings.
arXiv Detail & Related papers (2025-04-24T16:36:19Z) - xIDS-EnsembleGuard: An Explainable Ensemble Learning-based Intrusion Detection System [7.2738577621227085]
We focus on addressing the challenges of detecting malicious attacks in networks by designing an advanced Explainable Intrusion Detection System (xIDS)<n>Existing machine learning and deep learning approaches have invisible limitations, such as potential biases in predictions, a lack of interpretability, and the risk of overfitting to training data.<n>We propose an ensemble learning technique called "EnsembleGuard" to overcome these challenges.
arXiv Detail & Related papers (2025-03-01T20:49:31Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.<n>This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.<n>We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose using an auxiliary learning model to assess response correctness based on the self-consistency of multiple outputs generated by the large language models.<n>Our method builds a consistency graph to represent the agreement among multiple responses and uses a graph neural network (GNN) to estimate the likelihood that each response is correct.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.<n>We introduce a methodology designed to examine how input perturbations affect language models across various scales.<n>We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - Trusted Multi-View Classification [76.73585034192894]
We propose a novel multi-view classification method, termed trusted multi-view classification.
It provides a new paradigm for multi-view learning by dynamically integrating different views at an evidence level.
The proposed algorithm jointly utilizes multiple views to promote both classification reliability and robustness.
arXiv Detail & Related papers (2021-02-03T13:30:26Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.