論文の概要: Accessibility Scout: Personalized Accessibility Scans of Built Environments
- arxiv url: http://arxiv.org/abs/2507.23190v1
- Date: Thu, 31 Jul 2025 02:07:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:08.927745
- Title: Accessibility Scout: Personalized Accessibility Scans of Built Environments
- Title(参考訳): アクセシビリティスカウト:建築環境のパーソナライズされたアクセシビリティスコープ
- Authors: William Huang, Xia Su, Jon E. Froehlich, Yang Zhang,
- Abstract要約: 不慣れな建築環境のアクセシビリティの評価は障害者にとって重要である。
近年のLarge Language Models (LLM) の進歩により,この問題に対する新たなアプローチが実現されている。
本稿では,LLMに基づくアクセシビリティ・スキャニングシステムであるアクセシビリティ・スカウトについて紹介する。
- 参考スコア(独自算出の注目度): 10.083187958861812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessing the accessibility of unfamiliar built environments is critical for people with disabilities. However, manual assessments, performed by users or their personal health professionals, are laborious and unscalable, while automatic machine learning methods often neglect an individual user's unique needs. Recent advances in Large Language Models (LLMs) enable novel approaches to this problem, balancing personalization with scalability to enable more adaptive and context-aware assessments of accessibility. We present Accessibility Scout, an LLM-based accessibility scanning system that identifies accessibility concerns from photos of built environments. With use, Accessibility Scout becomes an increasingly capable "accessibility scout", tailoring accessibility scans to an individual's mobility level, preferences, and specific environmental interests through collaborative Human-AI assessments. We present findings from three studies: a formative study with six participants to inform the design of Accessibility Scout, a technical evaluation of 500 images of built environments, and a user study with 10 participants of varying mobility. Results from our technical evaluation and user study show that Accessibility Scout can generate personalized accessibility scans that extend beyond traditional ADA considerations. Finally, we conclude with a discussion on the implications of our work and future steps for building more scalable and personalized accessibility assessments of the physical world.
- Abstract(参考訳): 不慣れな建築環境のアクセシビリティを評価することは、障害者にとって非常に重要です。
しかし、ユーザや個人の健康専門家が行う手動による評価は困難であり、スケールできない。一方、自動的な機械学習手法は個々のユーザのユニークなニーズを無視することが多い。
大規模言語モデル(LLM)の最近の進歩は、パーソナライゼーションとスケーラビリティのバランスをとることで、アクセシビリティをより適応的でコンテキスト対応のアセスメントを可能にする、この問題に対する新しいアプローチを可能にする。
本稿では,LLMに基づくアクセシビリティ・スキャニングシステムであるアクセシビリティ・スカウトについて紹介する。
アクセシビリティスカウト(Accessibility Scout)は、アクセシビリティスカウト(Accessibility Scout、アクセシビリティスカウト)として、個人のモビリティレベル、好み、および特定の環境への関心を、協調的な人間-AIアセスメントを通じてカスタマイズする。
本研究では,アクセシビリティスカウトを設計するための6人の参加者によるフォーマティブスタディ,建設環境の500枚の画像の技術的評価,モビリティの異なる10人の参加者によるユーザスタディの3つの研究から得られた知見を報告する。
技術的評価とユーザスタディの結果から、Accessibility Scoutは従来のADAの考慮を超えて、パーソナライズされたアクセシビリティスキャンを生成できることがわかった。
最後に,よりスケーラブルでパーソナライズされた物理世界のアクセシビリティアセスメントを構築するための作業と今後のステップについて論じる。
関連論文リスト
- AI-based Wearable Vision Assistance System for the Visually Impaired: Integrating Real-Time Object Recognition and Contextual Understanding Using Large Vision-Language Models [0.0]
本稿では,音のビープ機構を通じてユーザに対してリアルタイムフィードバックを提供するために,人工知能(AI)技術を用いたウェアラブル視覚支援システムを提案する。
大規模視覚言語モデル(LVLM)を用いたユーザ環境におけるオブジェクトの詳細な記述を提供する。
論文 参考訳(メタデータ) (2024-12-28T07:26:39Z) - A Survey of Accessible Explainable Artificial Intelligence Research [0.0]
本稿では、説明可能な人工知能(XAI)のアクセシビリティに関する研究について、系統的な文献レビューを行う。
提案手法は,XAIとアクセシビリティーの交差点を捉えるために,いくつかの学術データベースを検索語で検索することを含む。
我々は、デジタル包摂とアクセシビリティを促進するために、XAI開発に障害コミュニティを含めることの重要性を強調している。
論文 参考訳(メタデータ) (2024-07-02T21:09:46Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Predicting the Intention to Interact with a Service Robot:the Role of Gaze Cues [51.58558750517068]
サービスロボットは、接近する人が対話する意図をできるだけ早く知覚する必要がある。
我々は,この認識課題を,対話を意図した潜在的なユーザ意図のシーケンス・ツー・シーケンス分類器を用いて解決する。
我々の主な貢献は、この文脈における人の視線を表す特徴の利点の研究である。
論文 参考訳(メタデータ) (2024-04-02T14:22:54Z) - How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - AccessLens: Auto-detecting Inaccessibility of Everyday Objects [17.269659576368536]
本稿では,日常オブジェクトのアクセス不能なインターフェースを識別するためのエンドツーエンドシステムであるAccessLensを紹介する。
当社のアプローチでは,21の非アクセシビリティクラスを自動的に認識するために設計された新しいAccessDBデータセットを使用して,検出器をトレーニングする。
AccessMetaは、これらのアクセシビリティクラスをオープンソース3D拡張設計にリンクする包括的な辞書を構築するための堅牢な方法として機能する。
論文 参考訳(メタデータ) (2024-01-29T09:27:55Z) - Driving Towards Inclusion: A Systematic Review of AI-powered Accessibility Enhancements for People with Disability in Autonomous Vehicles [4.080497848091375]
本稿では,自律走行車(AV)と自律走行車(自律走行車)における包括的ヒューマンコンピュータインタラクション(HCI)について検討する。
議論されている主な技術は、脳-コンピュータインターフェース、人為的相互作用、仮想現実、拡張現実、モード適応、音声アクティベートインターフェース、触覚フィードバックなどである。
これらの知見に基づいて,多様なユーザ層にまたがるアクセシビリティ要件に対処するエンドツーエンドの設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-26T00:06:08Z) - Can Foundation Models Watch, Talk and Guide You Step by Step to Make a
Cake? [62.59699229202307]
AIの進歩にもかかわらず、インタラクティブなタスクガイダンスシステムの開発は依然として大きな課題である。
我々は、人間のユーザと人間のインストラクターとの自然なインタラクションに基づいて、新しいマルチモーダルベンチマークデータセット、ウォッチ、トーク、ガイド(WTaG)を作成しました。
いくつかの基礎モデルを活用して、これらのモデルが認識可能なタスクガイダンスに迅速に適応できるかを調査した。
論文 参考訳(メタデータ) (2023-11-01T15:13:49Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Integrating Accessibility in a Mobile App Development Course [0.0]
このコースでは、アクセシビリティ・アウェアネス(法律専門家によるゲスト講演)、技術知識(Androidアクセシビリティガイドラインとテストプラクティスに関する講義)、共感(学生がスクリーンリーダーを使って携帯電話を目隠しして操作する必要がある活動)という3つのアクセシビリティ関連トピックを紹介した。
すべての学生は、スクリーンショットから、現実世界のアプリのユーザーインターフェイスの少なくとも1つのアクセシビリティーの問題を正しく特定することができ、90%が修正のための正しい解決策を提供することができる。
論文 参考訳(メタデータ) (2022-10-12T12:44:33Z) - ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement
Learning [91.58711082348293]
オンラインユーザからのフィードバックからシステムのパフォーマンスに関する強化学習は、この問題に対する自然な解決策である。
このアプローチでは、特にフィードバックが不足している場合には、ループ内の大量のトレーニングデータが必要になる傾向があります。
疎いユーザフィードバックから効率的に学習する階層型ソリューションを提案する。
論文 参考訳(メタデータ) (2022-02-05T02:01:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。