Learning Semantic Directions for Feature Augmentation in Domain-Generalized Medical Segmentation
- URL: http://arxiv.org/abs/2507.23326v1
- Date: Thu, 31 Jul 2025 08:14:26 GMT
- Title: Learning Semantic Directions for Feature Augmentation in Domain-Generalized Medical Segmentation
- Authors: Yingkai Wang, Yaoyao Zhu, Xiuding Cai, Yuhao Xiao, Haotian Wu, Yu Yao,
- Abstract summary: We propose a domain generalization framework tailored for medical image segmentation.<n>Our approach improves robustness to domain-specific variations by introducing implicit feature perturbations guided by domain statistics.<n>Our framework consistently outperforms existing domain generalization approaches.
- Score: 9.669116640409403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation plays a crucial role in clinical workflows, but domain shift often leads to performance degradation when models are applied to unseen clinical domains. This challenge arises due to variations in imaging conditions, scanner types, and acquisition protocols, limiting the practical deployment of segmentation models. Unlike natural images, medical images typically exhibit consistent anatomical structures across patients, with domain-specific variations mainly caused by imaging conditions. This unique characteristic makes medical image segmentation particularly challenging. To address this challenge, we propose a domain generalization framework tailored for medical image segmentation. Our approach improves robustness to domain-specific variations by introducing implicit feature perturbations guided by domain statistics. Specifically, we employ a learnable semantic direction selector and a covariance-based semantic intensity sampler to modulate domain-variant features while preserving task-relevant anatomical consistency. Furthermore, we design an adaptive consistency constraint that is selectively applied only when feature adjustment leads to degraded segmentation performance. This constraint encourages the adjusted features to align with the original predictions, thereby stabilizing feature selection and improving the reliability of the segmentation. Extensive experiments on two public multi-center benchmarks show that our framework consistently outperforms existing domain generalization approaches, achieving robust and generalizable segmentation performance across diverse clinical domains.
Related papers
- Multimodal Causal-Driven Representation Learning for Generalizable Medical Image Segmentation [56.52520416420957]
We propose Multimodal Causal-Driven Representation Learning (MCDRL) to tackle domain generalization in medical image segmentation.<n>MCDRL consistently outperforms competing methods, yielding superior segmentation accuracy and exhibiting robust generalizability.
arXiv Detail & Related papers (2025-08-07T03:41:41Z) - Structure-Aware Stylized Image Synthesis for Robust Medical Image Segmentation [10.776242801237862]
We propose a novel medical image segmentation method that combines diffusion models and Structure-Preserving Network for structure-aware one-shot image stylization.<n>Our approach effectively mitigates domain shifts by transforming images from various sources into a consistent style while maintaining the location, size, and shape of lesions.
arXiv Detail & Related papers (2024-12-05T16:15:32Z) - Adaptive Aggregation Weights for Federated Segmentation of Pancreas MRI [5.631060921219683]
Federated learning (FL) enables collaborative model training across institutions without sharing sensitive data.<n>Traditional FL methods, such as Federated Averaging (FedAvg), face difficulties in generalizing across domains.<n>This paper introduces a novel approach that incorporates adaptive aggregation weights.
arXiv Detail & Related papers (2024-10-29T20:53:01Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
Single source domain generalization holds promise for more reliable and consistent image segmentation across real-world clinical settings.
We propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features.
Our approach achieves favorable performance against existing methods in literature.
arXiv Detail & Related papers (2024-04-01T17:48:15Z) - Multi Task Consistency Guided Source-Free Test-Time Domain Adaptation
Medical Image Segmentation [8.591386126583748]
Source-free test-time adaptation for medical image segmentation aims to enhance the adaptability of segmentation models to diverse test sets of the target domain.
Ensuring consistency between target edges and paired inputs is crucial for test-time adaptation.
We propose a multi task consistency guided source-free test-time domain adaptation medical image segmentation method.
arXiv Detail & Related papers (2023-10-18T07:49:24Z) - CDDSA: Contrastive Domain Disentanglement and Style Augmentation for
Generalizable Medical Image Segmentation [38.44458104455557]
We propose an efficient Contrastive Domain Disentanglement and Style Augmentation (CDDSA) framework for generalizable medical image segmentation.
First, a disentangle network is proposed to decompose an image into a domain-invariant anatomical representation and a domain-specific style code.
Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the style codes from the same domain and different domains to be compact and divergent.
arXiv Detail & Related papers (2022-11-22T08:25:35Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Cross-View Regularization for Domain Adaptive Panoptic Segmentation [32.77436219094282]
We design a domain adaptive panoptic segmentation network that exploits inter-style consistency and inter-task regularization.
Our proposed network achieves superior segmentation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2021-03-03T18:29:23Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.