論文の概要: UniLDiff: Unlocking the Power of Diffusion Priors for All-in-One Image Restoration
- arxiv url: http://arxiv.org/abs/2507.23685v2
- Date: Mon, 04 Aug 2025 07:22:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:57.805012
- Title: UniLDiff: Unlocking the Power of Diffusion Priors for All-in-One Image Restoration
- Title(参考訳): UniLDiff:オールインワン画像復元に先立つ拡散のパワーを解き放つ
- Authors: Zihan Cheng, Liangtai Zhou, Dian Chen, Ni Tang, Xiaotong Luo, Yanyun Qu,
- Abstract要約: UniLDiffは、デグレッションとディテールを意識したメカニズムで強化された統合フレームワークである。
劣化認識機能融合(DAFF:Degradation-Aware Feature Fusion)を導入し,低品質機能を各段階に動的に注入する。
また,Detail-Aware Expert Module (DAEM) をデコーダ内に設計し,テクスチャと微細構造の回復性を高める。
- 参考スコア(独自算出の注目度): 16.493990086330985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All-in-One Image Restoration (AiOIR) has emerged as a promising yet challenging research direction. To address the core challenges of diverse degradation modeling and detail preservation, we propose UniLDiff, a unified framework enhanced with degradation- and detail-aware mechanisms, unlocking the power of diffusion priors for robust image restoration. Specifically, we introduce a Degradation-Aware Feature Fusion (DAFF) to dynamically inject low-quality features into each denoising step via decoupled fusion and adaptive modulation, enabling implicit modeling of diverse and compound degradations. Furthermore, we design a Detail-Aware Expert Module (DAEM) in the decoder to enhance texture and fine-structure recovery through expert routing. Extensive experiments across multi-task and mixed degradation settings demonstrate that our method consistently achieves state-of-the-art performance, highlighting the practical potential of diffusion priors for unified image restoration. Our code will be released.
- Abstract(参考訳): All-in-One Image Restoration (AiOIR)は、有望だが挑戦的な研究方向として登場した。
多様な劣化モデリングと詳細保存のコア課題に対処するために,分解・詳細認識機構に強化された統合フレームワークUniLDiffを提案する。
具体的には、デカップリング融合と適応変調により、低品質な特徴を動的に各復調ステップに注入し、多種多様な複合劣化の暗黙的なモデリングを可能にする分解認識機能融合(DAFF)を導入する。
さらに,Detail-Aware Expert Module (DAEM) をデコーダ内に設計し,プロのルーティングによるテクスチャと微細構造の回復を図る。
マルチタスクおよび混合劣化設定による広範囲な実験により,本手法は常に最先端の性能を達成し,画像再構成における拡散先行の実用的可能性を強調した。
私たちのコードは解放されます。
関連論文リスト
- Diffusion Once and Done: Degradation-Aware LoRA for Efficient All-in-One Image Restoration [14.922600858354983]
Diffusion Once and Done (DOD) 法は, 安定拡散(SD)モデルの1段階サンプリングのみで, 優れた復元性能を実現することを目的としている。
本手法は,視覚的品質と推論効率の両方において,既存の拡散型修復手法よりも優れる。
論文 参考訳(メタデータ) (2025-08-05T12:26:28Z) - UniRes: Universal Image Restoration for Complex Degradations [53.74404005987783]
実世界のイメージ復元は、様々なキャプチャ条件、キャプチャデバイス、後処理パイプラインから生じるさまざまな劣化によって妨げられている。
UniResという名前の、シンプルで柔軟な拡散ベースのフレームワークは、このような劣化をエンドツーエンドで解決するために提案されている。
提案手法は, 複合劣化画像復元データセットと単分解画像復元データセットの両方を用いて評価する。
論文 参考訳(メタデータ) (2025-06-05T21:25:39Z) - Restoring Real-World Images with an Internal Detail Enhancement Diffusion Model [9.520471615470267]
古い写真や低解像度画像などの現実世界の劣化画像の復元は、大きな課題となる。
最近のデータ駆動型アプローチは、高忠実度復元と、色付けに対するオブジェクトレベル制御の達成に苦慮している。
実世界の劣化画像の高忠実性復元のための内部詳細保存拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-05-24T12:32:53Z) - ControlFusion: A Controllable Image Fusion Framework with Language-Vision Degradation Prompts [58.99648692413168]
現在の画像融合法は、現実の撮像シナリオで発生する複合劣化に対処するのに苦労している。
複合劣化を適応的に中和する制御フュージョンを提案する。
実験では、制御フュージョンは、融合品質と劣化処理においてSOTA融合法より優れている。
論文 参考訳(メタデータ) (2025-03-30T08:18:53Z) - UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior [56.35236964617809]
画像復元は、悪天候、ぼやけ、騒音などの様々な要因によって劣化した入力からコンテンツを回復することを目的としている。
本稿では,PIRとTIRのギャップを埋める統一画像復元モデルUniRestoreを紹介する。
本稿では,分解エンコーダの特徴を再構築するための補足的特徴回復モジュール (CFRM) と,デコーダの適応的特徴融合を容易にするタスク特徴適応モジュール (TFA) を提案する。
論文 参考訳(メタデータ) (2025-01-22T08:06:48Z) - Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
マルチインワン画像復元 (IR) は, 一つのモデルで全ての種類の劣化画像復元を処理し, 大幅な進歩を遂げている。
本稿では,単一と混合の分解で画像を効果的に復元できる新しいマルチインワンIRモデルを提案する。
論文 参考訳(メタデータ) (2024-11-25T09:26:34Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
本稿では,時間認識拡散モデル(TADM)と呼ばれる,画像再スケーリングのための新しいフレームワークを提案する。
TADMは、事前訓練されたオートエンコーダの潜在空間で再スケーリング操作を行う。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルによって学習された強力な自然画像の先行を効果的に活用する。
論文 参考訳(メタデータ) (2024-08-17T09:51:42Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - SSP-IR: Semantic and Structure Priors for Diffusion-based Realistic Image Restoration [20.873676111265656]
SSP-IRは、低画質の画像からセマンティックと構造をフル活用することを目的としている。
提案手法は,合成および実世界のデータセットにおいて,他の最先端手法よりも優れる。
論文 参考訳(メタデータ) (2024-07-04T04:55:14Z) - CasSR: Activating Image Power for Real-World Image Super-Resolution [24.152495730507823]
超解像のためのカスケード拡散法CasSRは、高精細でリアルな画像を生成するために設計された新しい方法である。
低解像度画像からの情報の抽出を最適化するカスケード制御可能な拡散モデルを開発した。
論文 参考訳(メタデータ) (2024-03-18T03:59:43Z) - Multi-task Image Restoration Guided By Robust DINO Features [88.74005987908443]
DINOv2から抽出したロバストな特徴を利用したマルチタスク画像復元手法であるmboxtextbfDINO-IRを提案する。
まず,DINOV2の浅い特徴を動的に融合するPSF (Pixel-semantic fusion) モジュールを提案する。
これらのモジュールを統一された深層モデルに定式化することにより、モデルトレーニングを制約するために、DINO知覚の対照的な損失を提案する。
論文 参考訳(メタデータ) (2023-12-04T06:59:55Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - A Unified Conditional Framework for Diffusion-based Image Restoration [39.418415473235235]
画像復元のための拡散モデルに基づく統一条件付きフレームワークを提案する。
我々は、軽量なUNetを利用して初期ガイダンスと拡散モデルを予測し、指導の残余を学習する。
そこで本研究では,高解像度画像を扱うために,単純なステップ間パッチ分割方式を提案する。
論文 参考訳(メタデータ) (2023-05-31T17:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。