Anomalous Samples for Few-Shot Anomaly Detection
- URL: http://arxiv.org/abs/2507.23712v1
- Date: Thu, 31 Jul 2025 16:41:06 GMT
- Title: Anomalous Samples for Few-Shot Anomaly Detection
- Authors: Aymane Abdali, Bartosz Boguslawski, Lucas Drumetz, Vincent Gripon,
- Abstract summary: We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score.<n>We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each.
- Score: 5.199807441687141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several anomaly detection and classification methods rely on large amounts of non-anomalous or "normal" samples under the assump- tion that anomalous data is typically harder to acquire. This hypothesis becomes questionable in Few-Shot settings, where as little as one anno- tated sample can make a significant difference. In this paper, we tackle the question of utilizing anomalous samples in training a model for bi- nary anomaly classification. We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score leveraging recent Zero-Shot and memory-based techniques. We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each. In addition, we propose an augmentation-based validation technique to optimize the aggregation of the different anomaly scores and demonstrate its effectiveness on popular industrial anomaly detection datasets.
Related papers
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Exploring Global and Local Information for Anomaly Detection with Normal
Samples [23.68962459770419]
Anomaly detection aims to detect data that do not conform to regular patterns, and such data is also called outliers.
In many realistic scenarios, only the samples following normal behavior are observed, while we can hardly obtain any anomaly information.
We propose an anomaly detection method GALDetector which is combined of global and local information based on observed normal samples.
arXiv Detail & Related papers (2023-06-03T06:51:22Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - History-based Anomaly Detector: an Adversarial Approach to Anomaly
Detection [3.908842679355254]
Anomaly detection is a difficult problem in many areas and has recently been subject to a lot of attention.
We propose a simple yet new adversarial method to tackle this problem, denoted as History-based anomaly detector (HistoryAD)
It consists of a self-supervised model, trained to recognize 'normal' samples by comparing them to samples based on the training history of a previously trained GAN.
arXiv Detail & Related papers (2019-12-26T11:41:17Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.