Floquet Non-Bloch Formalism for a Non-Hermitian Ladder: From Theoretical Framework to Topolectrical Circuits
- URL: http://arxiv.org/abs/2507.23744v1
- Date: Thu, 31 Jul 2025 17:31:02 GMT
- Title: Floquet Non-Bloch Formalism for a Non-Hermitian Ladder: From Theoretical Framework to Topolectrical Circuits
- Authors: Koustav Roy, Dipendu Halder, Koustabh Gogoi, B. Tanatar, Saurabh Basu,
- Abstract summary: Periodically driven systems intertwined with non-Hermiticity opens a rich arena for topological phases that transcend conventional Hermitian limits.<n>We analytically derive an effective Floquet Hamiltonian and formulate the generalized Brillouin zone for a periodically driven quasi-one-dimensional system.<n>Our study demonstrates that the skin effect remains robust across a broad range of driving parameters, and is notably amplified in the low-frequency regime.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Periodically driven systems intertwined with non-Hermiticity opens a rich arena for topological phases that transcend conventional Hermitian limits. The physical significance of these phases hinges on obtaining the topological invariants that restore the bulk-boundary correspondence, a task well explored for static non-Hermitian (NH) systems, while it remains elusive for the driven scenario. Here, we address this problem by constructing a generalized Floquet non-Bloch framework that analytically captures the spectral and topological properties of time-periodic NH systems. Em- ploying a high-frequency Magnus expansion, we analytically derive an effective Floquet Hamiltonian and formulate the generalized Brillouin zone for a periodically driven quasi-one-dimensional system, namely, the Creutz ladder with a staggered complex potential. Our study demonstrates that the skin effect remains robust (despite the absence of non-reciprocal hopping) across a broad range of driving parameters, and is notably amplified in the low-frequency regime due to emergent longer- range couplings. We further employ a symmetric time frame approach that generates chiral-partner Hamiltonians, whose invariants, when appropriately combined, account for the full edge-state struc- ture. To substantiate the theoretical framework, we propose a topolectrical circuit (TEC) that serves as a viable experimental setting. Apart from capturing the skin modes, the proposed TEC design faithfully reproduces the presence of distinct Floquet edge states, as revealed through the voltage and impedance profiles, respectively. Thus, our work not only offers a theoretical framework for exploring NH-driven systems, but also provides an experimentally feasible TEC architecture for realizing these phenomena stated above in a laboratory.
Related papers
- Unconventional Floquet topological phases in the SSH lattice [36.136619420474766]
Topological materials, known for their edge states robust against local perturbations, hold promise for next-generation quantum technologies.<n>We propose to use high-frequency monochromatic driving and modulated amplitude pulses to dynamically induce and switch the Floquet topological phases.
arXiv Detail & Related papers (2025-07-22T10:34:58Z) - Observation of Momentum-Band Topology in PT-Symmetric acoustic Floquet Lattices [4.874977527406085]
We present a comprehensive study on the momentum-band topology in a PT-symmetric Floquet lattice.<n>By reconstructing the effective Hamiltonian, we extract the system's eigenstates and provide the first bulk evidence of momentum-band topology.<n>Our work paves the way for further experimental studies on the burgeoning momentum-gap physics.
arXiv Detail & Related papers (2025-07-05T15:10:05Z) - Topological crystals and soliton lattices in a Gross-Neveu model with Hilbert-space fragmentation [41.94295877935867]
We explore the finite-density phase diagram of the single-flavour Gross-Neveu-Wilson (GNW) model.<n>We find a sequence of inhomogeneous ground states that arise through a real-space version of the mechanism of Hilbert-space fragmentation.
arXiv Detail & Related papers (2025-06-23T14:19:35Z) - Non-Hermitian topology and skin modes in the continuum via parametric processes [44.99833362998488]
We show that Hermitian, nonlocal parametric pairing processes can induce non-Hermitian topology and skin modes.<n>Our model, stabilized by local dissipation, reveals exceptional points that spawn a tilted diabolical line in the dispersion.
arXiv Detail & Related papers (2025-05-05T16:38:20Z) - Non-Hermitian wave-packet dynamics and its realization within a non-Hermitian chiral cavity [0.0]
We derive the semiclassical equations of motion for a wave-packet in a non-Hermitian topological system.<n>We show that the complex Berry curvature introduces both an anomalous velocity and an anomalous force into the semiclassical EOM.<n>We suggest a potential experimental realization of this complex Haldane model using a non-Hermitian optical chiral cavity.
arXiv Detail & Related papers (2025-01-21T14:15:14Z) - Topology of Monitored Quantum Dynamics [5.388986285256996]
We classify Kraus operators and their effective non-Hermitian dynamical generators.<n>Our classification elucidates the role of topology in measurement-induced phase transitions.<n>We establish the bulk-boundary correspondence in monitored quantum dynamics.
arXiv Detail & Related papers (2024-12-09T01:27:26Z) - Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Unconventional Floquet topological phases from quantum engineering of
band inversion surfaces [2.722229723122409]
Floquet engineering provides a toolbox for the realization of novel quantum phases without static counterparts.
We propose a scheme to realize unconventional Floquet topological phases by engineering local band structures in particular momentum subspace called band surfaces (BISs)
This scheme is based on a new bulk-boundary correspondence that for a class of generic $d$-dimensional periodically driven systems, the local topological structure formed in each BIS uniquely determines the features of gapless boundary modes.
arXiv Detail & Related papers (2021-12-02T10:08:20Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.