Non-Hermitian wave-packet dynamics and its realization within a non-Hermitian chiral cavity
- URL: http://arxiv.org/abs/2501.12163v1
- Date: Tue, 21 Jan 2025 14:15:14 GMT
- Title: Non-Hermitian wave-packet dynamics and its realization within a non-Hermitian chiral cavity
- Authors: Weicen Dong, Qing-Dong Jiang, Matteo Baggioli,
- Abstract summary: We derive the semiclassical equations of motion for a wave-packet in a non-Hermitian topological system.
We show that the complex Berry curvature introduces both an anomalous velocity and an anomalous force into the semiclassical EOM.
We suggest a potential experimental realization of this complex Haldane model using a non-Hermitian optical chiral cavity.
- Score: 0.0
- License:
- Abstract: Topological wave-packet dynamics provide a powerful framework for studying quantum transport in topological materials. However, extending this approach to non-Hermitian quantum systems presents several important challenges, primarily due to ambiguities in defining the Berry phase and the non-unitary evolution of the wave-packets when $\mathcal{P}\mathcal{T}$ symmetry is broken. In this work, we adopt the complex Berry phase definition using the bi-orthogonal formalism and derive the semiclassical equations of motion (EOM) for a wave-packet in a non-Hermitian topological system. Interestingly, we find that the complex Berry curvature introduces both an anomalous velocity and an anomalous force into the semiclassical EOM. To validate the derived EOM, we design a non-Hermitian Haldane model featuring non-reciprocal next-nearest-neighbor (NNN) hopping, where the imbalance in the NNN hopping amplitudes gives rise to an emergent `complex chirality'. We reveal that the real and imaginary components of the complex chirality dictate the signs of both the real and imaginary parts of the complex Berry curvature, as well as the direction and dissipation rate of the edge states. Our analytical findings are confirmed by direct numerical simulations of the wave-packet dynamics. Finally, we suggest a potential experimental realization of this complex Haldane model using a non-Hermitian optical chiral cavity, providing a promising platform for testing our theoretical predictions.
Related papers
- Probing topological matter and fermion dynamics on a neutral-atom quantum computer [27.84599956781646]
We realize a digital quantum simulation architecture for two-dimensional fermionic systems based on reconfigurable atom arrays.
Results pave the way for digital quantum simulations of complex fermionic systems for materials science, chemistry, and high-energy physics.
arXiv Detail & Related papers (2025-01-30T18:32:23Z) - Non-Hermitian glide-time symmetry [17.423012765773063]
We study a one-dimensional non-Hermitian system with glide-time reversal (GT) symmetry.
We discover that the GT symmetry leads to unique physical properties and enables rich dynamic phenomena in non-Hermitian systems.
Remarkably, we reveal the dynamic NHSEs that exhibit diverse behaviors across distinct dynamic phases.
arXiv Detail & Related papers (2024-09-20T10:16:42Z) - Quantum metric dependent anomalous velocity in systems subject to complex electric fields [0.5461938536945723]
Berry phases have long been known to significantly alter the properties of periodic systems.
In non-Hermitian systems, generalizations of the Berry connection have been proposed and shown to have novel effects on dynamics and transport.
arXiv Detail & Related papers (2024-02-02T11:06:46Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Non-Hermitian strongly interacting Dirac fermions: a quantum Monte-Carlo
study [2.580765958706854]
In this letter, we investigate the interplay between non-Hermitian physics and strong correlation in Dirac-fermion systems.
We decipher the ground-state phase diagram of the Honeycomb Hubbard model in the presence non-Hermitian asymmetric spin resolved hopping processes.
Our study reveals that critical properties of the quantum phase transition between Dirac semi-metal and AF ordered phases are consistent with the universality class in Hermitian system.
arXiv Detail & Related papers (2023-02-20T17:22:01Z) - Measuring quantum geometric tensor of non-Abelian system in
superconducting circuits [21.82634956452952]
We use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.
We reveal its topological feature by extracting the topological invariant, demonstrating an effective protocol for quantum simulation of a non-Abelian system.
arXiv Detail & Related papers (2022-09-26T01:08:39Z) - Observation of non-Hermitian topology with non-unitary dynamics of
solid-state spins [6.692477608972573]
Non-Hermitian topological phases exhibit a number of exotic features.
Non-Hermitian Su-Schrieffer-Heeger (SSH) Hamiltonian is prototypical model for studying non-Hermitian topological phases.
arXiv Detail & Related papers (2020-12-16T19:00:04Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Berry connection induced anomalous wave-packet dynamics in non-Hermitian
systems [0.0]
Berry phases strongly affect the properties of crystalline materials.
In non-Hermitian systems, generalizations of the Berry connection have been analyzed.
We show that non-Hermiticity is manifested in anomalous weight rate and velocity terms.
arXiv Detail & Related papers (2020-04-28T18:00:12Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.