論文の概要: CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
- arxiv url: http://arxiv.org/abs/2507.23751v2
- Date: Wed, 03 Sep 2025 14:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 15:17:03.010543
- Title: CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
- Title(参考訳): CoT-Self-Instruct:推論および非推論タスクのための高品質な合成プロンプトの構築
- Authors: Ping Yu, Jack Lanchantin, Tianlu Wang, Weizhe Yuan, Olga Golovneva, Ilia Kulikov, Sainbayar Sukhbaatar, Jason Weston, Jing Xu,
- Abstract要約: CoT-Self-Instructは、LCMに第一の理由と設計をChain-of-Thought経由で指示する合成データ生成手法である。
検証可能な推論において、我々の合成データは既存のトレーニングデータセットを著しく上回る。
検証不能な命令追従タスクでは,本手法は人間と標準の自己指導訓練データの両方の性能を超越する。
- 参考スコア(独自算出の注目度): 59.69339605157168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT) based on given seed tasks, and then generate a new synthetic example of similar quality and complexity. This is followed by a filtering step to select high-quality data using automatic metrics, which are then used for LLM training. In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning, when evaluated on MATH500, AMC23, AIME24, and GPQA-Diamond. For non-verifiable instruction-following tasks, our method surpasses the performance of both human and standard Self-Instruct training data on the AlpacaEval 2.0 and Arena-Hard benchmarks.
- Abstract(参考訳): CoT-Self-Instructという合成データ生成手法を提案する。この手法はLLMに対して、与えられた種タスクに基づいてChain-of-Thought(CoT)を介して第一の理由と計画を指示し、その上で、類似した品質と複雑さの新たな合成例を生成する。
次に、自動メトリクスを使用して高品質なデータを選択するフィルタリングステップが続き、LLMトレーニングに使用される。
検証可能な推論では、MATH500, AMC23, AIME24, GPQA-Diamondで評価した場合、s1kやOpenMathReasoningなどの既存のトレーニングデータセットよりも有意に優れています。
検証不能な命令追従タスクに対しては、AlpacaEval 2.0 と Arena-Hard ベンチマーク上での人間と標準のセルフインストラクトトレーニングデータの性能を上回ります。
関連論文リスト
- UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示してきたが、コード生成は依然として大きな課題である。
私たちは、モデル生成ユニットテストを活用してコード生成プロセスのガイドと検証を行う、システマティックパイプラインであるUnitCoderを紹介します。
我々の研究は、モデル生成単体テストを利用して、事前学習コーパスから高品質なコードデータの合成を誘導するスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2025-02-17T05:37:02Z) - Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation [51.20656279478878]
MATRIXは、様々なテキストベースのシナリオを自動的に生成するマルチエージェントシミュレータである。
制御可能でリアルなデータ合成のためのMATRIX-Genを紹介する。
AlpacaEval 2 と Arena-Hard のベンチマークでは、Llama-3-8B-Base が、MATRIX-Gen によって合成されたデータセット上で、たった 20K の命令応答ペアで、Meta の Llama-3-8B-Instruct モデルより優れています。
論文 参考訳(メタデータ) (2024-10-18T08:01:39Z) - Optimizing Instruction Synthesis: Effective Exploration of Evolutionary Space with Tree Search [25.108044778194536]
命令を効率的に合成するスケーラブルなフレームワークであるIDEA-MCTS (Instruction Data Enhancement using Monte Carlo Tree Search)を紹介した。
木探索と評価モデルにより、各命令を効率よくガイドして高品質な形式に進化させ、命令の微調整を支援することができる。
実験の結果、IDEA-MCTSはシードインストラクションデータを大幅に向上させ、品質、多様性、複雑さの平均評価スコアを2.19から3.81に引き上げた。
論文 参考訳(メタデータ) (2024-10-14T11:28:30Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [59.60208063956459]
大規模言語モデル(LLM)は、効果的なアライメントのために高品質な命令データを必要とする。
本稿では,大規模かつ高品質な符号化命令を合成するスケーラブルなアルゴリズムであるGenematic-Instructを提案する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Improving Text Embeddings with Large Language Models [59.930513259982725]
合成データと1k以下のトレーニングステップのみを用いて,高品質なテキスト埋め込みを実現するための,新しい簡易な手法を提案する。
我々は、93言語にまたがる数十万のテキスト埋め込みタスクのための多様な合成データを生成するために、プロプライエタリなLLMを活用している。
実験により,ラベル付きデータを使わずに,高度に競争力のあるテキスト埋め込みベンチマークにおいて高い性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-31T02:13:18Z) - Reinforcement Learning and Data-Generation for Syntax-Guided Synthesis [0.0]
我々はモンテカルロ木探索(MCTS)を用いて候補解の空間を探索するSyGuSの強化学習アルゴリズムを提案する。
我々のアルゴリズムは,木に縛られた高信頼度と組み合わさって,探索と利用のバランスをとるためのポリシーと価値関数を学習する。
論文 参考訳(メタデータ) (2023-07-13T11:30:50Z) - Exploiting Asymmetry for Synthetic Training Data Generation: SynthIE and
the Case of Information Extraction [28.51694365908817]
本研究は,大規模言語モデルでは直接解けないタスクに対しても,有用なデータを合成的に生成できることを示唆する。
我々は、1.8Mのデータポイントのデータセットを合成的に生成し、人間の評価において既存のデータセットと比較して優れた品質を確立する。
論文 参考訳(メタデータ) (2023-03-07T18:48:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。