論文の概要: Heterophily-Aware Graph Attention Network
- arxiv url: http://arxiv.org/abs/2302.03228v3
- Date: Sun, 30 Jun 2024 08:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 18:29:26.331871
- Title: Heterophily-Aware Graph Attention Network
- Title(参考訳): Heterophily-Aware Graph Attention Network
- Authors: Junfu Wang, Yuanfang Guo, Liang Yang, Yunhong Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
既存のヘテロフィル性GNNは、各エッジのヘテロフィリのモデリングを無視する傾向にあり、これはヘテロフィリ問題に取り組む上でも不可欠である。
本稿では,局所分布を基礎となるヘテロフィリーとして完全に探索し,活用することで,新たなヘテロフィア対応グラフ注意ネットワーク(HA-GAT)を提案する。
- 参考スコア(独自算出の注目度): 42.640057865981156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning. Unfortunately, current weight assignment schemes in standard GNNs, such as the calculation based on node degrees or pair-wise representations, can hardly be effective in processing the networks with heterophily, in which the connected nodes usually possess different labels or features. Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem. In this paper, we firstly propose a heterophily-aware attention scheme and reveal the benefits of modeling the edge heterophily, i.e., if a GNN assigns different weights to edges according to different heterophilic types, it can learn effective local attention patterns, which enable nodes to acquire appropriate information from distinct neighbors. Then, we propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily, to handle the networks with different homophily ratios. To demonstrate the effectiveness of the proposed HA-GAT, we analyze the proposed heterophily-aware attention scheme and local distribution exploration, by seeking for an interpretation from their mechanism. Extensive results demonstrate that our HA-GAT achieves state-of-the-art performances on eight datasets with different homophily ratios in both the supervised and semi-supervised node classification tasks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)はグラフ表現学習において顕著な成功を収めている。
残念ながら、ノード次数やペアワイズ表現に基づく計算のような標準GNNの現在の重み付けスキームは、接続ノードが通常異なるラベルや特徴を持つヘテロフィリーでネットワークを処理するのに効果的ではない。
既存のヘテロフィル性GNNは、各エッジのヘテロフィリのモデリングを無視する傾向にあり、これはヘテロフィリ問題に取り組む上でも不可欠である。
本稿では,まず,辺をヘテロフィリックにモデル化することの利点を明らかにする。すなわち,GNNが異なる辺に異なる重みをヘテロフィリックなタイプに応じて割り当てる場合,ノードが各辺から適切な情報を取得できるような,効果的な局所的注意パターンを学習することができる。
そこで我々は,局所分布をヘテロフィリーとして完全に探索し,その基礎となるヘテロフィリーとして活用することにより,ヘテロフィリー対応グラフ注意ネットワーク(HA-GAT)を提案する。
提案するHA-GATの有効性を実証するために,提案するヘテロフィリ認識型アテンションスキームと局所分布探索を解析し,そのメカニズムから解釈を求める。
我々のHA-GATは,教師付きノード分類タスクと半教師付きノード分類タスクの両方において,ホモフィリー比の異なる8つのデータセットに対して,最先端のパフォーマンスを達成することを示す。
関連論文リスト
- Learn from Heterophily: Heterophilous Information-enhanced Graph Neural Network [4.078409998614025]
論理的に異なるラベルを持つノードは意味論的意味に基づいて接続される傾向があるが、グラフニューラルネットワーク(GNN)は、しばしば最適以下の性能を示す。
ヘテロフィリーに固有の意味情報をグラフ学習において効果的に活用できることを示す。
ノード分布を利用して異種情報を統合する新しいグラフ構造を構築する革新的な手法であるHiGNNを提案する。
論文 参考訳(メタデータ) (2024-03-26T03:29:42Z) - Demystifying Structural Disparity in Graph Neural Networks: Can One Size
Fit All? [61.35457647107439]
ほとんどの実世界のホモフィルグラフとヘテロフィルグラフは、ホモフィルグラフとヘテロフィルグラフの両方の構造パターンの混合ノードから構成される。
ノード分類におけるグラフニューラルネットワーク (GNN) は, 一般にホモ親和性ノード上で良好に機能することを示す。
次に、GNNに対する厳密で非I.d PAC-Bayesian一般化を提案し、性能格差の理由を明らかにした。
論文 参考訳(メタデータ) (2023-06-02T07:46:20Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - RAW-GNN: RAndom Walk Aggregation based Graph Neural Network [48.139599737263445]
本稿では,新しいアグリゲーション機構を導入し,RAndom Walk Aggregation-based Graph Neural Network(RAW-GNN)法を提案する。
提案手法は,広義のランダムウォークサーチを用いて,ホモフィリー情報と深さ優先の探索を行い,ヘテロフィリー情報を収集する。
従来の地区をパスベースの地区に置き換え、リカレントニューラルネットワークに基づく新しい経路ベースのアグリゲータを導入する。
論文 参考訳(メタデータ) (2022-06-28T12:19:01Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
本稿では,学習タスクに関係のないグラフエッジを適応的に識別する新しいエッジ分割GNN(ES-GNN)フレームワークを提案する。
本稿では,ES-GNNを非交叉グラフ記述問題の解とみなすことができることを示す。
論文 参考訳(メタデータ) (2022-05-27T01:29:03Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - Graph Neural Networks with Heterophily [40.23690407583509]
我々は、ホモフィリーなグラフとヘテロフィリーなグラフのGNNを一般化するCPGNNと呼ばれる新しいフレームワークを提案する。
フレームワークの互換性行列を(純粋なホモフィリーを表す)同一性に置き換えると、GCNに還元されることを示す。
論文 参考訳(メタデータ) (2020-09-28T18:29:36Z) - Beyond Homophily in Graph Neural Networks: Current Limitations and
Effective Designs [28.77753005139331]
半教師付きノード分類タスクにおけるグラフニューラルネットワークのヘテロフィリーまたは低ホモフィリー下での表現力について検討する。
多くの人気のあるGNNは、この設定を一般化することができず、グラフ構造を無視したモデルよりも優れています。
ヘテロフィリーの下でのグラフ構造からの学習を促進する重要な設計の集合を同定する。
論文 参考訳(メタデータ) (2020-06-20T02:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。