Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
- URL: http://arxiv.org/abs/2508.00381v1
- Date: Fri, 01 Aug 2025 07:19:23 GMT
- Title: Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
- Authors: Kamal Basha S, Athira Nambiar,
- Abstract summary: Weld defect detection crucial for ensuring the safety and reliability of piping systems in the oil and gas industry.<n>Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime.<n>Adapt-WeldNet is an adaptive framework for welding defect detection.<n>Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
Related papers
- TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
We propose a simple failure detection framework to unify and facilitate classification with rejection under both covariate and semantic shifts.<n>Our key insight is that by separating and consolidating failure-specific reliability knowledge with low-rank adapters, we can enhance the failure detection ability effectively and flexibly.
arXiv Detail & Related papers (2025-04-20T09:20:55Z) - NeRF-Based defect detection [6.72800891299482]
This paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins.<n>The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison.
arXiv Detail & Related papers (2025-03-31T22:27:51Z) - Safety Verification and Optimization in Industrial Drive Systems [0.0]
This paper optimize the safety and diagnostic performance of a real-world industrial Basic Drive Module using Uppaal Stratego.<n>We model the functional safety architecture of the BDM with timed automata and formally verify its key functional and safety requirements.<n>Considering the formally verified correct model as a baseline, we leverage the reinforcement learning facility in Uppaal Stratego to optimize the safe failure fraction to the 90 % threshold.
arXiv Detail & Related papers (2025-03-27T20:27:19Z) - Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - EIAD: Explainable Industrial Anomaly Detection Via Multi-Modal Large Language Models [23.898938659720503]
Industrial Anomaly Detection (IAD) is critical to ensure product quality during manufacturing.<n>We propose a novel approach that introduces a dedicated multi-modal defect localization module to decouple the dialog functionality from the core feature extraction.<n>We also contribute to the first multi-modal industrial anomaly detection training dataset, named Defect Detection Question Answering (DDQA)
arXiv Detail & Related papers (2025-03-18T11:33:29Z) - Federated Learning for Efficient Condition Monitoring and Anomaly Detection in Industrial Cyber-Physical Systems [0.30723404270319693]
This paper introduces an enhanced FL framework with three key innovations: adaptive model aggregation based on sensor reliability, dynamic node selection for resource optimization, and Weibull-based checkpointing for fault tolerance.<n> Experiments on the NASA Bearing and Hydraulic System datasets demonstrate superior performance compared to state-of-the-art FL methods, achieving 99.5% AUC-ROC in anomaly detection and maintaining accuracy even under node failures.
arXiv Detail & Related papers (2025-01-28T03:04:47Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.<n>We propose methods tailored to the unique properties of perception and decision-making.<n>We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - ABCD: Trust enhanced Attention based Convolutional Autoencoder for Risk Assessment [0.0]
Anomaly detection in industrial systems is crucial for preventing equipment failures, ensuring risk identification, and maintaining overall system efficiency.
Traditional monitoring methods often rely on fixed thresholds and empirical rules, which may not be sensitive enough to detect subtle changes in system health and predict impending failures.
This paper proposes Attention-based convolutional autoencoder (ABCD) for risk detection and map the risk value derive to the maintenance planning.
ABCD learns the normal behavior of conductivity from historical data of a real-world industrial cooling system and reconstructs the input data, identifying anomalies that deviate from the expected patterns.
arXiv Detail & Related papers (2024-04-24T20:15:57Z) - E-NER: Evidential Deep Learning for Trustworthy Named Entity Recognition [69.87816981427858]
Most named entity recognition (NER) systems focus on improving model performance, ignoring the need to quantify model uncertainty.
Evidential deep learning (EDL) has recently been proposed as a promising solution to explicitly model predictive uncertainty for classification tasks.
We propose a trustworthy NER framework named E-NER by introducing two uncertainty-guided loss terms to the conventional EDL, along with a series of uncertainty-guided training strategies.
arXiv Detail & Related papers (2023-05-29T02:36:16Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.