論文の概要: Reducing Quantum Circuit Synthesis to #SAT
- arxiv url: http://arxiv.org/abs/2508.00416v1
- Date: Fri, 01 Aug 2025 08:13:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.793447
- Title: Reducing Quantum Circuit Synthesis to #SAT
- Title(参考訳): 量子回路合成の#SATへの還元
- Authors: Dekel Zak, Jingyi Mei, Jean-Marie Lagniez, Alfons Laarman,
- Abstract要約: 普遍的な量子回路合成問題を最大モデルカウントに還元できることを示す。
Clifford+Tゲートセットに、精密で近似的な深さ最適化量子回路合成のための#SAT符号化を定式化する。
- 参考スコア(独自算出の注目度): 4.882319198853359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum circuit synthesis is the task of decomposing a given quantum operator into a sequence of elementary quantum gates. Since the finite target gate set cannot exactly implement any given operator, approximation is often necessary. Model counting, or #SAT, has recently been demonstrated as a promising new approach for tackling core problems in quantum circuit analysis. In this work, we show for the first time that the universal quantum circuit synthesis problem can be reduced to maximum model counting. We formulate a #SAT encoding for exact and approximate depth-optimal quantum circuit synthesis into the Clifford+T gate set. We evaluate our method with an open-source implementation that uses the maximum model counter d4Max as a backend. For this purpose, we extended d4Max with support for complex and negative weights to represent amplitudes. Experimental results show that existing classical tools have potential for the quantum circuit synthesis problem.
- Abstract(参考訳): 量子回路合成は、与えられた量子演算子を基本量子ゲートの列に分解するタスクである。
有限ターゲットゲート集合は任意の演算子を正確に実装できないため、近似がしばしば必要となる。
モデルカウント(#SAT)は近年、量子回路解析におけるコア問題に取り組むための有望な新しいアプローチとして実証されている。
本研究では,量子回路合成問題を最大モデルカウントに還元できることを初めて示す。
Clifford+Tゲートセットに、精密で近似的な深さ最適化量子回路合成のための#SAT符号化を定式化する。
バックエンドとして最大モデルカウンタd4Maxを使用するオープンソース実装を用いて,本手法の評価を行った。
この目的のために、振幅を表すために複素および負の重みをサポートするd4Maxを拡張した。
実験により、既存の古典的ツールが量子回路合成問題に可能性があることが示されている。
関連論文リスト
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
我々は、イオントラップハードウェアに存在するGlobal Molmer-Sorensenゲートのようなグローバルな相互作用を用いて量子回路を最適化し、合成する。
このアルゴリズムはZX計算に基づいており、係留ゲートをGlobal MolmerSorensenゲートにグループ化する特別な回路抽出ルーチンを使用する。
我々は,このアルゴリズムを様々な回路でベンチマークし,最新ハードウェアによる性能向上の方法を示す。
論文 参考訳(メタデータ) (2025-07-28T10:25:31Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum circuit synthesis via a random combinatorial search [0.0]
我々はランダムな探索手法を用いて、完全な量子状態準備や任意のターゲットを持つユニタリ演算子合成を実装した量子ゲート列を求める。
完全忠実度量子回路の分数は、回路サイズが単位忠実度を達成するために必要な最小回路サイズを超えると、急速に増加することを示す。
論文 参考訳(メタデータ) (2023-11-29T00:59:29Z) - Robust sparse IQP sampling in constant depth [3.670008893193884]
NISQ(ノイズのある中間スケール量子)は、堅牢な量子優位性と完全なフォールトトレラント量子計算の証明のないアプローチである。
本稿では,最小限の誤差補正条件でノイズに頑健な証明可能な超多項式量子優位性を実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:41:08Z) - Circuit Implementation of Discrete-Time Quantum Walks via the Shunt
Decomposition Method [1.2183405753834557]
本稿では,ブロック対角演算子の量子回路へのマッピング過程を解析する。
得られた回路は、ファルコンr5.11L型とファルコンr4T型の量子プロセッサ上で実行される。
論文 参考訳(メタデータ) (2023-04-04T03:20:55Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
量子回路に関する最初の完全な方程式理論は、最近導入されたばかりである。
我々は方程式理論を単純化し、いくつかの規則が残りの規則から導出されることを証明した。
完全な方程式理論は、アンシラやクビットの破棄を伴う量子回路に拡張することができる。
論文 参考訳(メタデータ) (2023-03-06T13:31:27Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
任意の量子状態を最適量子回路に符号化する量子古典ハイブリッドアルゴリズムを提案する。
提案アルゴリズムは、目的関数として、F = langle 0 vert hatmathcalCdagger vert Psi rangle$ の絶対値を用いる。
我々は、AQCEアルゴリズムによって生成された量子回路が、実際にノイズの多い実量子デバイス上で元の量子状態を合理的に表現できることを実験的に実証した。
論文 参考訳(メタデータ) (2021-12-29T12:33:41Z) - Efficient CNOT Synthesis for NISQ Devices [1.0152838128195467]
ノイズの多い中間スケール量子(NISQ)の時代、実際の量子デバイス上で量子アルゴリズムを実行することは、ユニークな課題に直面している。
この問題を解決するために,トークン還元法と呼ばれるCNOT合成法を提案する。
我々のアルゴリズムは、テストされた全ての量子アーキテクチャにおいて、最も広くアクセス可能なアルゴリズムよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-11-12T15:13:32Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。