論文の概要: Leveraging Convolutional and Graph Networks for an Unsupervised Remote Sensing Labelling Tool
- arxiv url: http://arxiv.org/abs/2508.00506v1
- Date: Fri, 01 Aug 2025 10:35:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.834408
- Title: Leveraging Convolutional and Graph Networks for an Unsupervised Remote Sensing Labelling Tool
- Title(参考訳): 教師なしリモートセンシングラベリングツールにおける畳み込みとグラフネットワークの活用
- Authors: Tulsi Patel, Mark W. Jones, Thomas Redfern,
- Abstract要約: リモートセンシング画像のための機械学習は、モデルトレーニングとテストのための最新かつ正確なラベルに依存している。
以前のラベル付けツールは、新しい目に見えないデータをラベル付けするために、事前のラベル付きデータをトレーニングに頼っていた。
本研究では,Sentinel-2衛星画像内の類似した状況と内容の地理的領域を探索し,ラベル付けするための教師なしパイプラインを定義する。
- 参考スコア(独自算出の注目度): 0.40964539027092906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning for remote sensing imaging relies on up-to-date and accurate labels for model training and testing. Labelling remote sensing imagery is time and cost intensive, requiring expert analysis. Previous labelling tools rely on pre-labelled data for training in order to label new unseen data. In this work, we define an unsupervised pipeline for finding and labelling geographical areas of similar context and content within Sentinel-2 satellite imagery. Our approach removes limitations of previous methods by utilising segmentation with convolutional and graph neural networks to encode a more robust feature space for image comparison. Unlike previous approaches we segment the image into homogeneous regions of pixels that are grouped based on colour and spatial similarity. Graph neural networks are used to aggregate information about the surrounding segments enabling the feature representation to encode the local neighbourhood whilst preserving its own local information. This reduces outliers in the labelling tool, allows users to label at a granular level, and allows a rotationally invariant semantic relationship at the image level to be formed within the encoding space.
- Abstract(参考訳): リモートセンシング画像のための機械学習は、モデルトレーニングとテストのための最新かつ正確なラベルに依存している。
リモートセンシング画像の遅延は時間とコストが重く、専門的な分析を必要とする。
以前のラベル付けツールは、新しい目に見えないデータをラベル付けするために、事前のラベル付きデータをトレーニングに頼っていた。
本研究では,Sentinel-2衛星画像内の類似した状況と内容の地理的領域を探索し,ラベル付けするための教師なしパイプラインを定義する。
提案手法では,畳み込みニューラルネットワークとグラフニューラルネットワークを併用して,画像比較のためのより堅牢な特徴空間を符号化することにより,従来の手法の限界を取り除く。
以前のアプローチとは異なり、画像は色と空間的類似性に基づいてグループ化されたピクセルの均一な領域に分割する。
グラフニューラルネットワークは、周囲のセグメントに関する情報を集約するために使用され、特徴表現は、独自のローカル情報を保持しながら、その近傍を符号化することができる。
これにより、ラベルツールの出力が減少し、ユーザーは粒度レベルでラベル付けすることができ、エンコーディング空間内で画像レベルでの回転不変なセマンティック関係が形成される。
関連論文リスト
- UnSegGNet: Unsupervised Image Segmentation using Graph Neural Networks [9.268228808049951]
この研究は、教師なし医療画像とコンピュータビジョンの幅広い分野に貢献する。
これは、現実世界の課題に沿うイメージセグメンテーションのための革新的な方法論である。
提案手法は,医用画像,リモートセンシング,物体認識など,多様な応用の可能性を秘めている。
論文 参考訳(メタデータ) (2024-05-09T19:02:00Z) - Task Specific Pretraining with Noisy Labels for Remote Sensing Image Segmentation [18.598405597933752]
自己監督(Self-supervision)は、人造地理空間アノテーションの正確な量を減らすためのリモートセンシングツールを提供する。
本研究では,モデル事前学習のためのノイズの多いセマンティックセグメンテーションマップを提案する。
2つのデータセットから,ノイズラベルを用いたタスク固有教師付き事前学習の有効性が示唆された。
論文 参考訳(メタデータ) (2024-02-25T18:01:42Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
イメージセグメンテーションはクラスタリングタスクであり、各ピクセルにクラスタラベルが割り当てられる。
本研究では,少数のピクセルのみをラベル付けすることで,半教師付きセグメンテーション手法を提案する。
提案した半教師付きRBF-CCAアルゴリズムは、リモートセンシングされた複数のマルチスペクトル画像に実装されている。
論文 参考訳(メタデータ) (2024-01-22T17:56:07Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - Language-driven Semantic Segmentation [88.21498323896475]
本稿では,言語駆動型セマンティックイメージセグメンテーションの新しいモデルLSegを提案する。
テキストエンコーダを用いて記述型入力ラベルの埋め込みを計算する。
エンコーダは、画素埋め込みを対応するセマンティッククラスのテキスト埋め込みに合わせるために、対照的な目的で訓練される。
論文 参考訳(メタデータ) (2022-01-10T18:59:10Z) - Local contrastive loss with pseudo-label based self-training for
semi-supervised medical image segmentation [13.996217500923413]
セミ/セルフ教師付き学習ベースのアプローチは、注釈付きデータとともにラベル付きデータを悪用する。
近年の自己教師付き学習法では, コントラッシブ・ロスを用いて, ラベルのない画像から優れたグローバルレベル表現を学習している。
セグメンテーションに有用な画素レベルの特徴を,セマンティックラベル情報を利用して学習するために,局所的なコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-12-17T17:38:56Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z) - RGB-based Semantic Segmentation Using Self-Supervised Depth Pre-Training [77.62171090230986]
本稿では,任意の意味的RGBセグメンテーション手法の事前学習に使用できる,スケーラブルで自己管理の容易な手法を提案する。
特に、我々の事前学習アプローチでは、深度センサーを用いて得られるラベルを自動生成する。
提案したHNラベルによる自己教師付き事前学習が,ImageNetの事前学習にどのように応用できるかを示す。
論文 参考訳(メタデータ) (2020-02-06T11:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。