論文の概要: Foundations of Interpretable Models
- arxiv url: http://arxiv.org/abs/2508.00545v1
- Date: Fri, 01 Aug 2025 11:36:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.855054
- Title: Foundations of Interpretable Models
- Title(参考訳): 解釈可能なモデルの基礎
- Authors: Pietro Barbiero, Mateo Espinosa Zarlenga, Alberto Termine, Mateja Jamnik, Giuseppe Marra,
- Abstract要約: 既存の解釈可能性の定義は、一般、音、頑健な解釈可能なモデル設計についてユーザーに知らせることができず、実行不可能である、と我々は主張する。
本稿では,解釈可能なAIコミュニティにおいて,一般的な,シンプルで,既定の非公式概念を仮定する解釈可能性の定義を提案する。
- 参考スコア(独自算出の注目度): 14.675430724126478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that existing definitions of interpretability are not actionable in that they fail to inform users about general, sound, and robust interpretable model design. This makes current interpretability research fundamentally ill-posed. To address this issue, we propose a definition of interpretability that is general, simple, and subsumes existing informal notions within the interpretable AI community. We show that our definition is actionable, as it directly reveals the foundational properties, underlying assumptions, principles, data structures, and architectural features necessary for designing interpretable models. Building on this, we propose a general blueprint for designing interpretable models and introduce the first open-sourced library with native support for interpretable data structures and processes.
- Abstract(参考訳): 既存の解釈可能性の定義は、一般、音、頑健な解釈可能なモデル設計についてユーザーに知らせることができず、実行不可能である、と我々は主張する。
これにより、現在の解釈可能性の研究は基本的に不適切である。
この問題に対処するために、我々は、解釈可能なAIコミュニティ内の既存の非公式概念を一般化し、単純で、仮定する、解釈可能性の定義を提案する。
私たちの定義は、基本的な特性、基礎となる前提、原則、データ構造、解釈可能なモデルを設計するために必要なアーキテクチャ的特徴を直接明らかにするので、実行可能であることを示す。
そこで我々は,解釈可能なモデルを設計するための一般的な青写真を作成するとともに,解釈可能なデータ構造とプロセスのネイティブサポートを備えた,最初のオープンソースライブラリを提案する。
関連論文リスト
- Modeling Open-World Cognition as On-Demand Synthesis of Probabilistic Models [93.1043186636177]
我々は、人々が分散表現と象徴表現の組み合わせを使って、新しい状況に合わせた見知らぬ精神モデルを構築するという仮説を探求する。
モデル合成アーキテクチャ」という概念の計算的実装を提案する。
我々は、新しい推論データセットに基づく人間の判断のモデルとして、MSAを評価した。
論文 参考訳(メタデータ) (2025-07-16T18:01:03Z) - Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization [2.163881720692685]
本稿では,概念層をアーキテクチャに組み込むことにより,解釈可能性とインターベンタビリティを既存モデルに組み込む新しい手法を提案する。
我々のアプローチは、モデルの内部ベクトル表現を、再構成してモデルにフィードバックする前に、概念的で説明可能なベクトル空間に投影する。
複数のタスクにまたがるCLを評価し、本来のモデルの性能と合意を維持しつつ、意味のある介入を可能にしていることを示す。
論文 参考訳(メタデータ) (2025-02-19T11:10:19Z) - Linearly-Interpretable Concept Embedding Models for Text Analysis [9.340843984411137]
線形解釈可能な概念埋め込みモデル(licEM)を提案する。
licEMs分類精度は既存の解釈可能なモデルよりも優れており、ブラックボックスモデルと一致する。
私たちのモデルが提供する説明は、既存のソリューションに対してより介入可能であり、慎重に整合していることを示します。
論文 参考訳(メタデータ) (2024-06-20T14:04:53Z) - Agent Design Pattern Catalogue: A Collection of Architectural Patterns for Foundation Model based Agents [22.94671478021277]
ファウンデーションモデルに対応した生成人工知能はエージェントの開発と実装を容易にする。
エージェントを設計する実践者を指導する体系的な知識が欠如している。
本稿では、文脈、力、トレードオフを分析した18のアーキテクチャパターンからなるパターンカタログを提案する。
論文 参考訳(メタデータ) (2024-05-16T23:24:48Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
テキスト埋め込みモデルが幅広い構文的文脈にまたがって一般化する能力は、まだ解明されていない。
その結果,既存のテキスト埋め込みモデルは,これらの構文的理解課題に十分対応していないことが明らかとなった。
多様な構文シナリオにおけるテキスト埋め込みモデルの一般化能力を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T08:51:00Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Semantic Role Labeling Meets Definition Modeling: Using Natural Language
to Describe Predicate-Argument Structures [104.32063681736349]
本稿では,離散ラベルの代わりに自然言語定義を用いて述語-代名詞構造を記述する手法を提案する。
PropBankスタイルおよびFrameNetスタイル、依存性ベースおよびスパンベースSRLに関する実験と分析は、解釈可能な出力を持つフレキシブルモデルが必ずしも性能を犠牲にしないことを示す。
論文 参考訳(メタデータ) (2022-12-02T11:19:16Z) - Abstract Interpretation for Generalized Heuristic Search in Model-Based
Planning [50.96320003643406]
ドメイン・ジェネラル・モデル・ベース・プランナーは、しばしば記号的世界モデルの緩和を通じて探索を構築することによって一般性を導出する。
抽象解釈がこれらの抽象化の統一フレームワークとして機能し、よりリッチな世界モデルに探索の範囲を広げる方法について説明する。
また、これらは学習と統合することができ、エージェントは抽象的な情報を通じて、新しい世界のモデルで計画を開始することができる。
論文 参考訳(メタデータ) (2022-08-05T00:22:11Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
このアーキテクチャは既存のNLPコンポーネントを統合し、8段階の言語モデリングの候補分析を生成する。
このアーキテクチャは、形式レベルでの表現形式としてUniversal Dependencies (UD) と、学習者回答のセマンティックな分析を表現するための抽象的意味表現 (AMR) に基づいて構築されている。
論文 参考訳(メタデータ) (2020-04-15T11:00:07Z) - Benchmarking Machine Reading Comprehension: A Psychological Perspective [45.85089157315507]
機械学習理解(MRC)は自然言語理解のベンチマークとして注目されている。
MRCの従来のタスク設計は、モデル解釈以上の説明可能性に欠けていた。
本稿では,心理学と心理指標に基づくMRCデータセットの設計に関する理論的基礎を提供する。
論文 参考訳(メタデータ) (2020-04-04T11:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。