KFS: KAN based adaptive Frequency Selection learning architecture for long term time series forecasting
- URL: http://arxiv.org/abs/2508.00635v2
- Date: Wed, 06 Aug 2025 08:08:39 GMT
- Title: KFS: KAN based adaptive Frequency Selection learning architecture for long term time series forecasting
- Authors: Changning Wu, Gao Wu, Rongyao Cai, Yong Liu, Kexin Zhang,
- Abstract summary: We propose a KAN based adaptive Frequency Selection learning architecture (KFS) to address these challenges.<n>This framework tackles prediction challenges stemming from cross-scale noise interference and complex pattern modeling.<n>Experiments across multiple real-world time series datasets demonstrate that KT achieves state-of-the-art performance as a simple yet effective architecture.
- Score: 8.839783121363835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-scale decomposition architectures have emerged as predominant methodologies in time series forecasting. However, real-world time series exhibit noise interference across different scales, while heterogeneous information distribution among frequency components at varying scales leads to suboptimal multi-scale representation. Inspired by Kolmogorov-Arnold Networks (KAN) and Parseval's theorem, we propose a KAN based adaptive Frequency Selection learning architecture (KFS) to address these challenges. This framework tackles prediction challenges stemming from cross-scale noise interference and complex pattern modeling through its FreK module, which performs energy-distribution-based dominant frequency selection in the spectral domain. Simultaneously, KAN enables sophisticated pattern representation while timestamp embedding alignment synchronizes temporal representations across scales. The feature mixing module then fuses scale-specific patterns with aligned temporal features. Extensive experiments across multiple real-world time series datasets demonstrate that KT achieves state-of-the-art performance as a simple yet effective architecture.
Related papers
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification [56.925103708982164]
We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
arXiv Detail & Related papers (2025-05-29T07:18:28Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting [5.032613143415414]
We propose a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer.<n>TimeCF decomposes the original time series into sequences of different scales.<n>Different scales are aggregated through a Feed-Forward Network.
arXiv Detail & Related papers (2025-05-23T06:39:20Z) - FreSca: Scaling in Frequency Space Enhances Diffusion Models [55.75504192166779]
This paper explores frequency-based control within latent diffusion models.<n>We introduce FreSca, a novel framework that decomposes noise difference into low- and high-frequency components.<n>FreSca operates without any model retraining or architectural change, offering model- and task-agnostic control.
arXiv Detail & Related papers (2025-04-02T22:03:11Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TimeKAN: KAN-based Frequency Decomposition Learning Architecture for Long-term Time Series Forecasting [15.333859971089236]
We propose a KAN-based Frequency Decomposition Learning architecture (TimeKAN) to address the complex forecasting challenges caused by multiple frequency mixtures.<n>TimeKAN mainly consists of three components: Cascaded Frequency Decomposition (CFD) blocks, Multi-order KAN Representation Learning (M-KAN) blocks and Frequency Mixing blocks.
arXiv Detail & Related papers (2025-02-10T03:51:26Z) - MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - DCSF: Deep Convolutional Set Functions for Classification of
Asynchronous Time Series [5.339109578928972]
Asynchronous Time Series is a time series where all the channels are observed asynchronously-independently.
This paper proposes a novel framework, that is highly scalable and memory efficient, for the asynchronous time series classification task.
We explore convolutional neural networks, which are well researched for the closely related problem-classification of regularly sampled and fully observed time series.
arXiv Detail & Related papers (2022-08-24T08:47:36Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.