Learning Network Dismantling without Handcrafted Inputs
- URL: http://arxiv.org/abs/2508.00706v1
- Date: Fri, 01 Aug 2025 15:22:37 GMT
- Title: Learning Network Dismantling without Handcrafted Inputs
- Authors: Haozhe Tian, Pietro Ferraro, Robert Shorten, Mahdi Jalili, Homayoun Hamedmoghadam,
- Abstract summary: We introduce an attention mechanism and utilize message-iteration profiles to generate a structurally diverse training set of small synthetic networks.<n>Thereby, we build an expressive message-passing framework and use it to efficiently solve the NP-hard problem of Network Dismantling.<n>Our proposed model generalizes to large, unseen real networks with millions of nodes, outperforming state-of-the-art network dismantling methods.
- Score: 8.94608358298071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of message-passing Graph Neural Networks has been a breakthrough for important network science problems. However, the competitive performance often relies on using handcrafted structural features as inputs, which increases computational cost and introduces bias into the otherwise purely data-driven network representations. Here, we eliminate the need for handcrafted features by introducing an attention mechanism and utilizing message-iteration profiles, in addition to an effective algorithmic approach to generate a structurally diverse training set of small synthetic networks. Thereby, we build an expressive message-passing framework and use it to efficiently solve the NP-hard problem of Network Dismantling, virtually equivalent to vital node identification, with significant real-world applications. Trained solely on diversified synthetic networks, our proposed model -- MIND: Message Iteration Network Dismantler -- generalizes to large, unseen real networks with millions of nodes, outperforming state-of-the-art network dismantling methods. Increased efficiency and generalizability of the proposed model can be leveraged beyond dismantling in a range of complex network problems.
Related papers
- Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
Modern deep learning models have tens of millions of parameters which makes the inference processes resource-intensive.<n>This paper proposes and evaluates a network pruning framework that eliminates non-essential parameters.<n>The proposed framework produces competitive lean networks compared to the original networks.
arXiv Detail & Related papers (2025-02-11T02:31:04Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.<n>This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.<n>Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
We introduce a simple, efficient, and clustering-oriented model based on unsupervised textbfGraph Attention textbfAutotextbfEncoder for community detection in attributed networks.
The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery.
arXiv Detail & Related papers (2023-11-21T20:45:55Z) - Enhancing Network Management Using Code Generated by Large Language
Models [15.557254786007325]
We introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries.
This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code.
We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements.
arXiv Detail & Related papers (2023-08-11T17:49:15Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Cascaded Compressed Sensing Networks: A Reversible Architecture for
Layerwise Learning [11.721183551822097]
We show that target propagation could be achieved by modeling the network s each layer with compressed sensing, without the need of auxiliary networks.
Experiments show that the proposed method could achieve better performance than the auxiliary network-based method.
arXiv Detail & Related papers (2021-10-20T05:21:13Z) - Learning low-rank latent mesoscale structures in networks [1.1470070927586016]
We present a new approach for describing low-rank mesoscale structures in networks.
We use several synthetic network models and empirical friendship, collaboration, and protein--protein interaction (PPI) networks.
We show how to denoise a corrupted network by using only the latent motifs that one learns directly from the corrupted network.
arXiv Detail & Related papers (2021-02-13T18:54:49Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.