NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System
- URL: http://arxiv.org/abs/2508.00709v1
- Date: Fri, 01 Aug 2025 15:23:20 GMT
- Title: NyayaRAG: Realistic Legal Judgment Prediction with RAG under the Indian Common Law System
- Authors: Shubham Kumar Nigam, Balaramamahanthi Deepak Patnaik, Shivam Mishra, Ajay Varghese Thomas, Noel Shallum, Kripabandhu Ghosh, Arnab Bhattacharya,
- Abstract summary: Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning.<n>We propose NyayaRAG, a Retrieval-Augmented Generation framework that simulates realistic courtroom scenarios.<n>Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
- Score: 5.551153560142468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Legal Judgment Prediction (LJP) has emerged as a key area in AI for law, aiming to automate judicial outcome forecasting and enhance interpretability in legal reasoning. While previous approaches in the Indian context have relied on internal case content such as facts, issues, and reasoning, they often overlook a core element of common law systems, which is reliance on statutory provisions and judicial precedents. In this work, we propose NyayaRAG, a Retrieval-Augmented Generation (RAG) framework that simulates realistic courtroom scenarios by providing models with factual case descriptions, relevant legal statutes, and semantically retrieved prior cases. NyayaRAG evaluates the effectiveness of these combined inputs in predicting court decisions and generating legal explanations using a domain-specific pipeline tailored to the Indian legal system. We assess performance across various input configurations using both standard lexical and semantic metrics as well as LLM-based evaluators such as G-Eval. Our results show that augmenting factual inputs with structured legal knowledge significantly improves both predictive accuracy and explanation quality.
Related papers
- RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - AUTOLAW: Enhancing Legal Compliance in Large Language Models via Case Law Generation and Jury-Inspired Deliberation [5.732271982985626]
AutoLaw is a novel violation detection framework for domain-specific large language models (LLMs)<n>It combines adversarial data generation with a jury-inspired deliberation process to enhance legal compliance of LLMs.<n>Our results highlight the framework's ability to adaptively probe legal misalignments and deliver reliable, context-aware judgments.
arXiv Detail & Related papers (2025-05-20T07:09:13Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience.<n>Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision.<n>This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the Intelligent Court''
arXiv Detail & Related papers (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.<n>Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.<n>Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - How Vital is the Jurisprudential Relevance: Law Article Intervened Legal Case Retrieval and Matching [31.378981566988063]
Legal case retrieval (LCR) aims to automatically scour for comparable legal cases based on a given query.<n>To address them, a daunting challenge is assessing the uniquely defined legal-rational similarity within the judicial domain.<n>We propose an end-to-end model named LCM-LAI to solve the above challenges.
arXiv Detail & Related papers (2025-02-25T15:29:07Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Legal Judgment Prediction (LJP) Amid the Advent of Autonomous AI Legal
Reasoning [0.0]
Legal Judgment Prediction is a longstanding and open topic in the theory and practice-of-law.
Various methods and techniques to predict legal cases and judicial actions have emerged over time.
The advent of AI Legal Reasoning will have a pronounced impact on how LJP is performed and its predictive accuracy.
arXiv Detail & Related papers (2020-09-29T00:12:42Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.